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This research explores the capability of a generative AI model called 
Variational Autoencoder (VAE), leveraging device sensors such as breath 
acetone and sweat biomarkers to identify life-threatening diseases, such as 
cancer, diabetes, and heart disease at earlier stages and help address metabolic 
issues. These sensors are intended to be integrated into smart devices such as 
wearable fitness trackers or smartwatches. The sweat biomarker sensor 
collects data from perspiration, including lactate, glucose, cortisol, and 
sodium levels. The breath acetone sensor measures the concentration of 
acetone in exhaled breath a byproduct of fat metabolism that reflects 
metabolic state. Both sensors can help assess mitochondrial quality, a core 
parameter for predicting diseases like cancer, diabetes, and cardiovascular 
disorders. The work demonstrates the efficacy of the system, achieving a 
training accuracy of 92%, testing accuracy of 89%, and an anomaly detection 
rate of 90%, with a low false positive rate of 5%. A reconstruction error 
threshold of 0.1 was empirically determined to differentiate between normal 
and abnormal patterns. The system’s architecture built on Azure cloud and 
edge infrastructure supports secure data storage, low-latency inference, and 
personalized health recommendations via mobile interfaces. Overall, 
SmartBio offers a proactive and scalable solution for personalized metabolic 
health monitoring, paving the way for early intervention and lifestyle-driven 
disease prevention. 
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1. INTRODUCTION 

Chronic lifestyle diseases such as cancer, diabetes, and cardiovascular disorders remain the leading causes of 
mortality globally. According to the 2023 National Diabetes Statistics Report, an estimated 38.4 million individuals 
in the United States—approximately 11.6% of the population—are living with diabetes. Among adults aged 18 years 
and older, this prevalence rises to 14.7%. Similarly, cancer continues to pose a major public health challenge. As per 
the United States Cancer Statistics (USCS), 1,777,566 new cancer cases were reported in 2021, with 608,366 deaths 
occurring in 2022 alone. Despite national initiatives such as the 1971 National Cancer Act and the 2016 Cancer 
Moonshot, mortality rates remain alarmingly high [1]-[3]. 

In the context of cardiovascular disease, the statistics are equally concerning. The U.S. Centers for Disease 
Control and Prevention (CDC) report that heart disease is the leading cause of death, with one individual succumbing 
every 33 seconds. In 2022, the death toll from heart-related complications reached 702,880, and the economic burden 
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of cardiovascular care amounted to $252.2 billion during 2019–2020. These figures underscore the urgent need for 
effective, scalable preventive measures to reduce disease incidence and mortality through early detection and 
behavioural modification [4]. 

A growing body of evidence identifies poor dietary habits and disrupted metabolic processes as root causes of 
many chronic conditions. Key culprits include excessive consumption of refined sugars, simple carbohydrates, and 
trans fats—all of which adversely affect mitochondrial function. The mitochondrion, often described as the cell’s 
“powerhouse,” plays a central role in energy metabolism. Impaired mitochondrial health is strongly associated with 
obesity, insulin resistance, cancer progression, and cardiovascular dysfunction. Given this backdrop, it becomes 
imperative to monitor mitochondrial health continuously and non-invasively. Traditional diagnostic techniques often 
fail to detect metabolic degradation at an early stage, when intervention is most effective [5]-[6]. 

This paper introduces SmartBio, a wearable device that integrates real-time biosensing with AI-driven analytics 
to address this gap. By analyzing exhaled breath acetone and sweat biomarkers and applying VAEs for anomaly 
detection in the latent metabolic space, the system enables early identification of metabolic disruptions. The aim is 
to empower individuals to proactively modify their lifestyle based on scientifically grounded insights, thereby 
reducing the incidence and impact of non-communicable diseases. This research contributes a novel paradigm in 
preventive healthcare—where technology not only tracks but also interprets physiological signals to deliver 
actionable, personalized guidance. The remainder of the paper elaborates on sensor technologies, the VAE 
architecture, latent space mapping, and system integration for real-time deployment. A schematic representation of 
the proposed system is shown in Figure 1. 

                                                         

Figure1. Framework of proposed system. 

2. RELATED WORK 

In recent years, there has been growing momentum in leveraging biosensing technologies and artificial 
intelligence for proactive health monitoring and early disease detection [7]-[8]. Traditional preventive healthcare 
systems rely heavily on periodic annual checkups, which often miss the subtle, early-stage metabolic imbalances that 
precede chronic conditions such as cancer, diabetes, and cardiovascular diseases. The proposed SmartBio system 
seeks to transcend this limitation by enabling continuous, real-time physiological monitoring through the integration 
of sweat and breath sensors with advanced generative AI models—particularly VAEs—deployed using the 
computational infrastructure of the Microsoft Azure cloud platform [9]. 

Existing studies in nutritional and metabolic science have underscored the critical role of mitochondrial function 
in the pathogenesis of lifestyle diseases. Colbert [10], in Beyond Keto, notes that cancer cells exhibit a high 
dependency on glucose for proliferation and survival. By contrast, a ketogenic (fat-based) metabolic state deprives 
cancer cells of their primary energy source, thereby inhibiting their growth. This biological insight offers a foundation 
for therapeutic strategies that prioritize mitochondrial health and regulate glucose intake. Similarly, Joseph [11], in 
Fat for Fuel, articulates a compelling argument that mitochondrial dysfunction is a primary cause—not a 
consequence—of cancer. He explains that healthy mitochondria facilitate efficient oxidative phosphorylation, 
whereas cancerous cells shift to anaerobic glycolysis (the Warburg effect), bypassing the mitochondrial energy 
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pathway. This metabolic switch is not only inefficient but also conducive to rapid tumour growth. Accordingly, 
Mercola advocates for a fat-adaptive metabolic state through low-carbohydrate, high-fat diets to enhance 
mitochondrial resilience and reduce cancer risk. 

The correlation between glucose-driven metabolism, insulin resistance, and mitochondrial degradation forms the 
basis for understanding the onset of diabetes and its downstream effects on cardiovascular health. As insulin 
resistance intensifies, glucose utilization becomes impaired, resulting in a compensatory shift that burdens the 
mitochondria, leading to systemic inflammation and increased oxidative stress—precursors to heart disease. By 
promoting a ketogenic metabolic state, in which mitochondria utilize ketone bodies rather than glucose, overall 
mitochondrial quality and energy output improve, reducing the risk of metabolic disease progression. 

However, despite the scientific understanding of dietary impacts on mitochondrial health, behavioural adherence 
to healthy lifestyle changes remains a major challenge. Saraf and Saraf [12], in The Satvic Revolution, argue that 
processed food industries exploit human psychological vulnerabilities by engineering highly palatable, addictive 
foods laden with sugar and refined carbohydrates. These foods override natural satiety mechanisms and foster 
habitual consumption patterns detrimental to long-term health. As a result, even motivated individuals tend to relapse 
into unhealthy habits shortly after gaining awareness—whether through health screenings, social exposure, or 
personal experiences. To address this motivational gap, James Clear’s [13] behavioural science principles from 
Atomic Habits are particularly relevant. Clear emphasizes that habit change is incremental and must be scaffolded 
through “tiny habits,” including strategies like habit stacking, identity reinforcement, and positive reinforcement. 
Embedding such behaviour-change mechanisms directly into smart devices—through adaptive sensor alerts, positive 
feedback loops, and personalized nudges—may significantly improve long-term compliance with preventive health 
behaviours. 

The SmartBio system aims to operationalize these principles by not only providing real-time health feedback but 
also guiding users toward incremental habit formation [14]-[15]. Through data-driven alerts based on mitochondrial 
quality thresholds and pattern deviations detected by the VAE model, the system delivers personalized prompts that 
encourage users to adopt healthier routines—e.g., reducing sugar intake, improving hydration, managing stress, or 
engaging in physical activity. Unlike one-time diagnostics, this system functions as a persistent digital health 
companion, reinforcing good behaviour and preventing relapse through daily engagement. In summary, while prior 
works have explored the biochemical and behavioural foundations of chronic disease prevention, SmartBio uniquely 
synthesizes these insights into a continuous, AI-driven, sensor-integrated platform that offers both physiological 
diagnostics and behavioural intervention [16]-[18]. This convergence of biosensing, generative modelling, and habit-
based nudging marks a transformative step in personalized, preventive healthcare. 

3. ROLE OF GENERATIVE AI IN PERSONALISED HEALTH MONITORING 

        Artificial Intelligence has revolutionized healthcare through predictive analytics, automation of diagnostic 
procedures, and decision-support systems [19]-[20]. However, a significant distinction exists between conventional 
AI techniques—including machine learning and deep learning and Generative Artificial Intelligence (Generative 
AI). Traditional AI models are primarily designed for predictive tasks based on historical patterns and labelled data, 
offering outputs constrained within the bounds of observed data. In contrast, Generative AI synthesizes entirely new, 
context-aware outputs by learning latent representations of input data distributions. This distinction becomes critical 
when designing systems for personalized, real-time health recommendations [26]. 
        The SmartBio framework presented in this study capitalizes on the generative capabilities of Variational 
Autoencoders to achieve continuous health profiling and early anomaly detection. Unlike predictive models that 
classify or regress known outcomes, VAEs generate latent embeddings that describe the underlying distribution of 
individual physiological states enabling both anomaly detection and the synthetic generation of potential future 
health conditions based on deviations from normality [27]. 

Table 1.  Generative AI versus Traditional AI in healthcare applications. 

Aspect Traditional AI (ML/DL) Generative AI (VAE in SmartBio) 
Output Type Predictive Generative (new data) 

Personalization Limited High 
Data Dependency Requires labeled data Learns from both labeled and unlabeled data 
Health Guidance Generalized risk scoring Personalized lifestyle recommendations 

Application Classification, prediction Anomaly detection, simulation, data generation 
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        Traditional AI models used in healthcare typically operate on static datasets to predict diagnoses, suggest 
treatment outcomes, or classify health conditions. These approaches, while valuable, lack the adaptability to 
accommodate the dynamic and individualized nature of human physiology. Generative AI, by contrast, dynamically 
adapts to user-specific data. In the context of SmartBio, it analyzes time-series inputs from breath acetone levels and 
sweat biomarkers—key indicators of mitochondrial function and metabolic health. Using a Variational Autoencoder 
(VAE), the system can generate personalized alerts when physiological signals deviate from learned patterns and 
provide proactive guidance, such as modifying dietary intake or exercise behaviour. 

3. 1 Personalized Health Forecasting through VAE 

At the core of SmartBio is the Variational Autoencoder (VAE), a deep generative model composed of three 
primary components: the encoder, the latent space sampler, and the decoder. 
A. Encoder: Accepts multidimensional physiological inputs (e.g., lactate, glucose, sodium, breath acetone) and 

learns a probabilistic mapping to a latent space. This enables the model to capture complex, non-linear 
relationships between features. 

B. Latent Space Sampling: The encoder outputs a mean vector μ\muμ and a standard deviation σ\sigmaσ, from 
which a latent vector z is sampled using the reparameterization trick, as shown in Equation (1). 

𝑧 = 𝜇 + 𝜎 ⋅ 𝜖,     𝜖~ℵ(0, 𝐼)                   (1) 

This technique enables backpropagation through the stochastic layer. 

C. Decoder: Reconstructs the original input from the latent vector z, optimizing the model to learn the true 
distribution of healthy versus anomalous physiological states. 

The training objective minimizes a variational loss, which combines the reconstruction error with the Kullback–
Leibler (KL) divergence, as shown in Equation (2). 

  ℒ ா =  𝔼(𝓏|𝓍)[log 𝑝(𝓍|𝓏)]  −  𝐷 (𝑞(𝓏|𝓍)  ∥  𝑝(𝓏))              (2) 

        This framework empowers the system to detect early-stage anomalies even in the absence of labelled disease 
data, positioning it as an ideal candidate for unsupervised health monitoring. 

3. 2 Adaptive Learning and Forecasting 

An essential capability of generative AI in this system is its ability to continuously adapt to a user's evolving 
health profile. As more sensor data is collected, the model retrains and recalibrates its latent space representations, 
fine-tuning its understanding of the user's normal metabolic patterns. This allows the device not only to detect 
abnormalities in real time but also to simulate potential future health risks—such as the likelihood of developing 
diabetes, cardiovascular disease, or cancer. 
In essence, the SmartBio device functions as an intelligent agent that: 

a) Learns from the user's physiological data 
b) Detects unseen anomalies using latent embeddings 
c) Generates actionable feedback in a personalized, generative fashion 
d) Supports long-term behaviour change by anticipating deviations from health norms 

4. METHODOLOGY 

       The proposed SmartBio framework integrates multimodal biosensing with deep generative modelling to 
facilitate early-stage disease detection and personalized metabolic health assessment. The methodology comprises 
five primary components/steps and these are explained in the following five sub sections.  
Step 1: Biosensor Data Acquisition 
        Two categories of non-invasive biosensors are employed: 
 Breath Acetone Sensor: Detects the concentration of acetone in exhaled breath using semiconductor gas sensors 

or laser spectroscopy-based methods. Acetone levels correlate with fat metabolism and serve as a proxy for 
mitochondrial efficiency. 

 Sweat Biomarker Sensor: Utilizes electrochemical sensing techniques to detect biomarkers such as lactate, 
glucose, sodium, and cortisol in perspiration. These markers provide insight into metabolic load, hydration, 
stress, and glucose utilization. 
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The sensors are integrated into a wearable form factor (e.g., smartwatches or fitness bands) and are designed to 
stream data continuously via Bluetooth Low Energy (BLE) or Wi-Fi modules to a central mobile application. 
Step 2: Signal Preprocessing 
        Raw sensor outputs are subject to preprocessing to ensure data integrity. Steps include: 

 Noise filtering (e.g., Savitzky-Golay filter or moving average) 
 Normalization (e.g., min-max scaling or z-score standardization) 
 Temporal alignment of multimodal data streams 
 Missing value imputation using time-aware interpolation techniques 

Step 3: Feature Extraction 
        Preprocessed data is segmented into time-series windows and transformed into feature vectors capturing: 

 Statistical properties (mean, variance, skewness) 
 Temporal dynamics (autocorrelation, rolling averages) 
 Frequency-domain characteristics (via FFT to identify periodicity and spikes) 

These features serve as input to the VAE model. 
Step 4: Variational Autoencoder Modeling 
        The VAE framework consists of an encoder, a latent representation layer, and a decoder: 
    •   The encoder maps input features 𝓍 to be latent distribution 
𝑞థ(𝓏|𝓍) Characterized by a mean µ and variance 𝜎ଶ. 
    •   A latent variable  𝓏~𝒩(𝜇, 𝜎ଶ) is sampled and passed to the decoder.  
    •   The decoder reconstructs the input as �̂� =  𝑓ఏ(𝓏). 
The VAE is trained to minimize the loss function: 

    ℒ(𝜃, 𝜙; 𝓍) =  𝔼ഝ(𝓏|𝓍)[log 𝑝ఏ(𝓍|𝓏)]  −  𝐷 (𝑞థ(𝓏|𝓍)  ∥  𝑝(𝓏))   (1)  

In (1), 𝐷 denotes the kullback-Leibler divergence between the learned posterior and the prior 𝑝(𝓏) = 𝒩(0, 𝐼). 
Anomaly Detection and Interpretation 
        Once trained on healthy physiological data, the VAE learns a compressed latent representation of “normal” 
metabolic profiles. During inference: 

 New data is projected into the latent space. 
 Reconstruction error and latent vector deviation are monitored. 
 Anomalies (e.g., deviations beyond a learned threshold) are flagged, indicating potential metabolic 

dysregulation. 

Table 1. Pseudocode: SmartBio Framework. 

// Pseudocode: SmartBio Framework 
 
BEGIN 
// Step 1: Biosensor Data Acquisition 
FUNCTION acquire_sensor_data() 
    LOOP CONTINUOUSLY 
        breath_data ← read_breath_acetone_sensor() 
        sweat_data ← read_sweat_biomarker_sensor() 
        timestamp ← get_current_time() 
        combined_data ← merge(breath_data, sweat_data, timestamp) 
        stream_to_application(combined_data) 
    END LOOP 
END FUNCTION 
// Step 2: Signal Preprocessing 
FUNCTION preprocess_data(sensor_data) 
    sensor_data ← apply_noise_filter(sensor_data) 
    sensor_data ← normalize(sensor_data) 
    sensor_data ← align_temporally(sensor_data) 
    sensor_data ← impute_missing_values(sensor_data) 
    RETURN sensor_data 
END FUNCTION 
// Step 3: Feature Extraction 
FUNCTION extract_features(preprocessed_data) 
    features ← [] 
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    FOR each time_window in segment(preprocessed_data, window_size) 
        statistical ← compute_statistics(time_window) 
        temporal ← compute_temporal_dynamics(time_window) 
        frequency ← compute_frequency_features(time_window) 
        combined_features ← concatenate(statistical, temporal, frequency) 
        features.append(combined_features) 
    END FOR 
    RETURN features 
END FUNCTION 
// Step 4: VAE Modeling 
FUNCTION train_vae_model(features) 
    DEFINE encoder_network() 
        input_features → Dense → ReLU → Latent Mean (μ), Latent Log Variance (log(σ²)) 
    DEFINE sampling_layer(μ, log(σ²)) 
        ε ← random_normal() 
        z ← μ + exp(0.5 * log(σ²)) * ε 
        RETURN z 
    DEFINE decoder_network(z) 
        z → Dense → ReLU → output_features (ŷ) 
    vae_loss ← reconstruction_loss(x, ŷ) + KL_divergence(μ, σ²) 
    optimize(vae_loss) 
    RETURN trained_vae_model 
END FUNCTION 
// Step 5: Anomaly Detection 
FUNCTION detect_anomaly(new_input, trained_vae_model, threshold) 
    z_new ← encoder(new_input) 
    x_hat ← decoder(z_new) 
    error ← compute_reconstruction_error(new_input, x_hat) 
    IF error > threshold THEN 
        RETURN "Anomaly Detected: Potential Mitochondrial Dysfunction" 
    ELSE 
        RETURN "Normal Mitochondrial Profile" 
    END IF 
END FUNCTION 
// Main Execution Flow 
sensor_data ← acquire_sensor_data() 
preprocessed ← preprocess_data(sensor_data) 
features ← extract_features(preprocessed) 
trained_vae_model ← train_vae_model(features) 
 
WHILE receiving_new_data 
    new_data ← acquire_sensor_data() 
    new_preprocessed ← preprocess_data(new_data) 
    new_features ← extract_features(new_preprocessed) 
    result ← detect_anomaly(new_features, trained_vae_model, threshold=0.1) 
    store_in_azure_cloud(new_data, result) 
    alert_user_interface(result) 
END WHILE 
 
END 

         
 This unsupervised detection enables the system to signal early signs of abnormal physiological states, potentially 
indicating the onset of chronic diseases. A graphical representation of the above said methodology is shown by 
Figure 2 and the Pseudocode is represented by Table 1. 
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Figure 2. Flowchart of the SmartBio framework. 

5. RESULTS AND DISCUSSION 

       The SmartBio system was evaluated for its ability to detect early deviations in metabolic health through 
continuous monitoring of breath acetone and sweat biomarkers, and for its ability to personalize alerts using a VAE 
model. The evaluation focused on three primary performance metrics: accuracy of anomaly detection, latency of 
cloud-based inference and alerting, and user-specific adaptability of the generative model. 
        The accuracy of the model being evaluated along with the reconstruction error threshold for the Model. To 
assess the robustness and accuracy of the VAE model integrated within the SmartBio system, we conducted multiple 
experiments using time-series physiological data simulating real-world biomarker variations. The dataset was 
divided into an 80:20 split for training and testing, respectively. The following key metrics were recorded as shown 
in Table 2. 

Table 2. Performance Metrics. 

 
 
 
 
 
 
 
 

Metrics Value 

Training Accuracy 92% 

Testing Accuracy 89% 

Anomaly Detection Rate 90% 

False Positive Rate 5% 

Reconstruction Error Threshold 0.1 
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        The training accuracy of 92% indicates that the VAE effectively learned the underlying distribution of normal 
metabolic patterns using historical biomarker data. The testing accuracy of 89% reflects strong generalization 
capability, which is crucial for real-time physiological monitoring across unseen user profiles. The anomaly detection 
rate of 90% demonstrates the model’s sensitivity in identifying early physiological deviations, especially in 
mitochondrial dysfunction patterns. Importantly, the false positive rate was maintained at 5%, minimizing 
unnecessary alerts and enhancing user trust. The reconstruction error threshold of 0.1 was empirically determined 
during validation to differentiate between normal and abnormal data points and forms the basis for triggering 
anomaly alerts in the live system. These results confirm the VAE model’s ability to deliver high-fidelity health 
monitoring while maintaining a low burden of misclassification, making it well-suited for continuous deployment in 
wearable sensor devices. 

Figure 3 illustrates the progression of the model's learning performance across 50 training epochs. As depicted, 
both the training and testing accuracy show a steady upward trend, stabilizing at approximately 92% and 89%, 
respectively. This demonstrates the model's ability to effectively learn latent representations of healthy metabolic 
profiles from multimodal biosensor data. The small gap between training and testing accuracy reflects minimal 
overfitting, indicating strong generalization capabilities of the VAE on unseen input data. This performance affirms 
the VAE’s suitability for modeling complex physiological signals, such as those derived from breath acetone and 
sweat biomarkers, in the context of mitochondrial health monitoring. 

 
Figure 3. Progression of the model's learning performance. 

Figure 4 presents the distribution of reconstruction errors for both healthy and anomalous input samples. Healthy 
samples exhibit lower reconstruction errors clustered around 0.05, while anomalous samples are centered well above 
the empirically defined threshold of 0.1. The clear separation between the two distributions demonstrates the model’s 
effectiveness in distinguishing normal metabolic states from potentially dysfunctional ones. The chosen threshold 
minimizes false positives (reported at 5%) while maintaining a high anomaly detection rate (90%), ensuring that 
alerts generated by the SmartBio system are both sensitive and specific. This supports the use of VAE-driven 
reconstruction error as a robust diagnostic signal for early-stage metabolic anomalies. 

 

Figure 4. Distribution of reconstruction errors. 
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6. CONCLUSION 

Conclusion: This study presents SmartBio, an AI-enabled smart medical system that integrates wearable biosensing 
technology with deep generative modeling to facilitate early detection of chronic diseases and personalized metabolic 
health assessment. By combining real-time data from non-invasive breath acetone and sweat biomarker sensors with 
the representational power of a VAE, the system enables robust detection of mitochondrial dysfunction—an early 
indicator of conditions such as cancer, diabetes, and cardiovascular disorders. The SmartBio framework 
demonstrates that generative AI models can go beyond conventional diagnostic tools by capturing complex 
physiological patterns and adapting to individual health profiles over time. With a reconstruction error-based 
anomaly detection mechanism, the system achieved a training accuracy of 92%, testing accuracy of 89%, and an 
anomaly detection rate of 90%, with a low false positive rate of 5%. These results validate the model’s ability to 
generalize well across varied input profiles and reliably identify early-stage health risks. 
Future Scope: The companion mobile and web applications associated with SmartBio will integrate intelligent chat 
interfaces powered by OpenAI to deliver user-specific health coaching. These AI agents will analyze individual 
health records and biomarker data to recommend personalized exercise routines, dietary adjustments, and behavioral 
interventions. Such continuous digital support transforms SmartBio from a passive monitoring device into an active 
agent of behavioral transformation, supporting individuals in their pursuit of long-term well-being. 
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