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Distributed Denial of Service (DDoS) attacks are a persistent threat to 
network security, capable of disrupting critical services. This study proposes 
a hybrid deep learning model that combines Recurrent Neural Networks 
(RNN), Gated Recurrent Units (GRU), and Long Short-Term Memory 
(LSTM) networks to effectively detect DDoS attacks in network traffic. Each 
component of the hybrid model captures unique temporal dependencies—
RNN for basic sequence patterns, GRU for efficient short-term memory, and 
LSTM for long-term memory retention. The model is evaluated using two 
standard Intrusion Detection System (IDS) datasets, CIC-DDoS2019 and 
UNSW-NB15, representing diverse attack scenarios. Preprocessing 
techniques, including feature selection, normalization, and class balancing 
with Synthetic Minority Over-sampling Technique (SMOTE), ensure high-
quality input data. Experimental results demonstrate that the hybrid model 
outperforms standalone RNN, GRU, and LSTM models, achieving superior 
accuracy, precision, recall, and F1-score. Specifically, the hybrid model 
achieves 97.3% accuracy, 97.0% precision, 97.6% recall, and an AUC of 
0.981 on the CIC-DDoS2019 dataset. These results underscore the model’s 
capability to detect complex DDoS patterns while maintaining low false 
positive rates. The proposed approach offers a scalable, adaptive, and robust 
solution for real-time intrusion detection in dynamic network environments, 
outperforming traditional methods. 
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1. INTRODUCTION 

In today’s digitally connected world, network security has become a fundamental concern for organizations, 
governments, and individuals alike. One of the most persistent and disruptive forms of cyber threats is the Distributed 
Denial of Service (DDoS) attack. These attacks aim to overwhelm a target system with illegitimate traffic, rendering 
essential services unavailable to legitimate users. With the increasing sophistication of attack strategies and the rapid 
expansion of IoT and cloud infrastructures, the need for intelligent, adaptive, and scalable intrusion detection 
mechanisms has become more critical than ever [1]-[2]. 

Figure 1 illustrates the workflow of a Distributed Denial-of-Service (DDoS) attack, highlighting a structured 
interaction between an attacker, compromised hosts (bots), and the targeted victim server. Initially, the attacker 
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remotely commands multiple compromised systems, collectively known as a botnet, to simultaneously generate and 
send substantial volumes of malicious traffic. The coordinated traffic from these bots overwhelms the victim server’s 
processing capabilities, effectively disrupting normal operations by exhausting network bandwidth or computational 
resources. Understanding this hierarchical attack structure is crucial for developing robust intrusion detection 
systems and defense strategies against contemporary cybersecurity threats. 

 

 
 

Figure 1. Illustration of a Distributed Denial-of-Service (DDoS) attack workflow. 
 

Traditional signature-based and rule-based Intrusion Detection Systems (IDS) often fail to detect novel or 
obfuscated DDoS patterns due to their dependency on pre-defined signatures. Moreover, these approaches typically 
lack the ability to learn temporal behavior and adapt to rapidly changing traffic dynamics [3]-[4]. As a result, 
researchers have shifted toward data-driven methods, particularly machine learning and deep learning, for enhancing 
threat detection capabilities. Among these, recurrent deep learning architectures have shown great promise in 
modeling sequential data such as network traffic flows. The RNN, GRU, and LSTM models are particularly well-
suited for analyzing time-series due to their ability to capture temporal dependencies. While RNNs provide a basic 
framework for sequence modeling, they often suffer from vanishing gradient issues. GRUs and LSTMs were 
developed to address these limitations by incorporating gating mechanisms that enable more efficient memory 
management and long-range dependency learning. However, when deployed individually, these models may still 
exhibit performance bottlenecks or overfit specific traffic patterns, limiting their generalizability. 

To address the above discussed challenges, this study proposes a hybrid ensemble model that integrates RNN, 
GRU, and LSTM architectures for the accurate detection of DDoS attacks. The core hypothesis is that each model 
contributes unique strengths to temporal feature extraction, and their combination can provide a more comprehensive 
and robust detection mechanism. The ensemble model employs soft voting to fuse the outputs of the individual 
networks, leveraging their collective intelligence to enhance classification performance and reduce false positives. 

The proposed framework is validated on two widely-used IDS datasets—CIC-DDoS2019 and UNSW-NB15—
which contain diverse attack types and realistic traffic behaviors. These datasets offer a comprehensive testbed for 
evaluating the model’s ability to detect DDoS attacks under different network conditions. Preprocessing steps such 
as feature normalization, encoding, and class balancing are applied to ensure high-quality input data for training and 
evaluation. The model is assessed using standard performance metrics including accuracy, precision, recall, and F1-
score. All the symbols and acronyms of this manuscript are given in the Appendix section. 

2. RELATED WORK 

In recent years, deep learning models have gained substantial traction in the field of network intrusion detection, 
particularly for identifying Distributed Denial of Service (DDoS) attacks. Rahman and Nijhum [1] proposed a CNN-
LSTM hybrid architecture for multi-class intrusion detection, achieving notable accuracy results of 98.34% in multi-
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class and 98.7% in binary classification tasks. However, this approach does not specifically address the combined 
strengths of RNN, GRU, and LSTM networks, particularly in scenarios focused exclusively on DDoS attack 
detection. 

In a more specialized study, Gautam et al. [2] developed a hybrid system combining Bidirectional RNN, LSTM, 
and GRU architectures along with a correlation-based feature optimization strategy. Their model achieved an 
impressive classification accuracy of 99.13% while significantly reducing feature dimensions by approximately 42%, 
highlighting the importance of effective feature selection and temporal dependency handling in enhancing real-time 
intrusion detection efficiency. 

Dandotiya and Makwana [3] focused specifically on DDoS detection using a CNN-GRU model enhanced by 
attention mechanisms, achieving 99.6% accuracy on the CIC-DDoS2019 dataset. Despite demonstrating superior 
performance compared to conventional methods, their exclusion of LSTM or RNN layers potentially limits the 
model’s capability to thoroughly capture complex sequential dependencies in evolving DDoS traffic patterns. Further 
enriching the landscape, Panggabean et al. [4] integrated GRUs with Neural Turing Machines (NTMs), achieving 
99% accuracy in detecting both DoS and DDoS attacks across UNSW-NB15 and BoT-IoT datasets. Their approach 
effectively retained long-term temporal patterns, suitable for adaptive real-time intrusion detection, albeit potentially 
raising scalability concerns due to architectural complexity. Kona [5] examined an ensemble of RNN and LSTM 
models specifically for DDoS attack detection, achieving a modest accuracy of 95.2%. Although promising, this 
methodology underperformed compared to traditional models like Random Forest and notably lacked integration of 
GRU units, thereby restricting its versatility in handling variable-length sequential traffic data. 

Arcos-Burgos [6] investigated a GRU-LSTM hybrid framework tested across CICIDS2017 and UNSW-NB15 
datasets, revealing enhanced intrusion detection capabilities. Their study underscored the complementary roles of 
GRU in short-term dependency capture and LSTM in managing long-term patterns, thus striking an optimal balance 
between training efficiency and prediction accuracy. Additionally, Li et al. [7] employed a double-stacked LSTM 
architecture, obtaining 99.48% accuracy in detecting DDoS attacks on the CIC-IDS2017 dataset. Similarly, Hnamte 
and Hussain [8] have reported 99.9% accuracy using various hybrid deep neural network approaches. Nevertheless, 
these contributions primarily centered around either generic hybrid frameworks or LSTM-specific architecture 
without deeply exploring the combined utility of RNN, GRU, and LSTM components. 

Subramanian et al. [9] separately assessed LSTM and GRU models on the CICDDoS2019 dataset, observing 
significant accuracy discrepancies of 99.4% (LSTM) and 92.5% (GRU). This marked variance underscores the 
complementary nature of these architectures and reinforces the rationale behind integrating them into a cohesive 
hybrid ensemble model for enhanced robustness, adaptability, and accuracy in DDoS detection [9]. The area of 
research in other domains is also reported in the literature [10]-[12]. 

3. METHODOLOGY 

3.1 Data Preprocessing      
Effective preprocessing is essential for enhancing the accuracy of deep learning models used for DDoS detection. 

In this study, we utilized the CIC-DDoS2019 and UNSW-NB15 datasets, which provide diverse network traffic 
features. Feature selection was performed using a correlation-based method to reduce redundancy. Features with 
correlation coefficients above 0.9 were eliminated to prevent multicollinearity. Normalization was carried out using 
Min-Max scaling (1). 

𝑥 =
௫    ି  ௫

௫ೌೣ ି  ௫
               (1) 

In (1), 𝑥 is the input feature, 𝑥 and 𝑥௫ are the minimum and maximum values of the feature, respectively. 
Categorical variables were encoded using one-hot encoding to represent each class as a binary vector. Class 

imbalance in the datasets was addressed using SMOTE (Synthetic Minority Over-sampling Technique), which 
synthetically generates minority class instances to balance the training data. 

3.2 Hybrid Model Architecture: RNN-GRU-LSTM Ensemble 

The proposed model integrates RNN, GRU, and LSTM layers to leverage their individual strengths in capturing 
temporal dependencies in network traffic. 

3.2.1 Recurrent Neural Network (RNN) 

RNN processes sequential data by maintaining a hidden state is given by (2). The structure of a RNN is shown 
in Figure 2. 
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                              ℎ௧ = 𝜎(𝑊௫𝑥௧ + 𝑊ℎ௧ିଵ + 𝑏)              (2) 

In (2), 𝑥௧ is the input at time 𝑡, ℎ𝑡 is the hidden state, and 𝜎 is an activation function such as ReLU or tanh. 

 

Figure 2.  The basic structure of RNN. 

3.2.2 Gated Recurrent Unit  

GRU uses gating mechanisms to manage memory flow is given by (3). 

𝑧௧ = 𝜎(𝑊௭𝑥௧+ 𝑈௭ℎ௧ିଵ + 𝑏௭) 
 𝑟௧ = 𝜎(𝑊௭𝑥௧ + 𝑈ℎ௧ିଵ + 𝑏) 

               ℎ෨௧ = tanh(𝑊ℎ𝑥௧ + 𝑈ℎ(𝑟௧ ⊙ ℎ௧ିଵ) + 𝑏ℎ)                                               (3) 
         ℎ௧ = (1 − 𝑧௧) ⊙ ℎ௧ିଵ + 𝑧௧ ⊙ ℎ෨௧ 

 

3.2.3 Long Short-Term Memory 

LSTM networks manage both short and long-term dependencies through a memory cell (4). An architecture of 
basic LSTM cell is shown in Figure 3. 

 
Figure 3. Architecture of a basic LSTM cell. 

 

                                                                         𝑓௧ = 𝜎൫𝑊𝑥௧ + 𝑈ℎ௧ିଵ + 𝑏൯ 
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                                                                         𝑖௧ = 𝜎(𝑊𝑥௧ + 𝑈ℎ௧ିଵ + 𝑏) 

                                                                          𝑜௧ = 𝜎(𝑊𝑥௧ + 𝑈ℎ௧ିଵ + 𝑏)                                                         (4) 

                                                                         𝑐௧̃ = 𝑡𝑎𝑛ℎ (𝑊𝑥௧ + 𝑈ℎ௧ିଵ + 𝑏) 

                                                                          𝑐௧ = 𝑓௧ ⊙ 𝑐௧ିଵ + 𝑖௧ ⊙ 𝑐௧̃ 

                                                                         ℎ௧ = 𝑜௧ ⊙  𝑡𝑎𝑛ℎ(𝑐௧) 

3. 3 Ensemble Strategy 

Outputs from RNN, GRU, and LSTM are concatenated and passed through a dense layer with a sigmoid 
activation function to perform binary classification is given by (5). 

     𝑦 = 𝜎(𝑊[ℎோேே, ℎீோ, ℎௌ்ெ] + 𝑏)                  (5) 

 

 

 
 
Figure 4. Proposed Hybrid RNN-GRU-LSTM Architecture.  
 

Figure 4 illustrates the proposed hybrid deep learning architecture integrating the RNN, GRU, and LSTM 
networks. This architecture leverages the strengths of each component: the RNN layer efficiently captures basic 
sequential dependencies, the GRU layers improve upon these dependencies by managing short-term memory with 
simplified gating mechanisms, and the LSTM layers provide robust handling of long-term dependencies through 
advanced gating units. Collectively, this hierarchical combination enhances the model's capability to effectively 
model intricate temporal dynamics and sequential patterns, potentially resulting in superior performance and 
accuracy in predicting complex behaviors or detecting anomalies such as those seen in network intrusion scenarios. 

3.3. 1 Training and Evaluation 

The model was trained using the Adam optimizer with a learning rate of 0.001 and binary cross-entropy as the 
loss function. Early stopping with a patience of 5 epochs was used to prevent overfitting. Evaluation metrics included 
Accuracy, Precision, Recall, F1-score, and AUC-ROC. A 5-fold stratified cross-validation strategy was implemented 
to validate generalizability. The model was implemented in Python using TensorFlow and Keras on an NVIDIA 
GPU-enabled system for faster training. 

5. RESULTS AND DISCUSSION  
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To evaluate the performance of the proposed hybrid RNN-GRU-LSTM model, extensive experiments were 
conducted on two benchmark datasets: CIC-DDoS2019 and UNSW-NB15. The evaluation metrics considered 
include Accuracy, Precision, Recall, F1-Score, and Area Under the Receiver Operating Characteristic Curve (AUC). 
The hybrid model was benchmarked against individual RNN, GRU, and LSTM architectures to assess its 
effectiveness in detecting DDoS attacks.  

Table. 1 summarizes the classification performance of all models on the CIC-DDoS2019 dataset. The proposed 
hybrid model achieved an overall accuracy of 97.3%, surpassing the standalone RNN (95.2%), GRU (96.1%), and 
LSTM (96.4%) models. In addition, the hybrid model obtained the highest F1-score (97.3%), indicating a better 
balance between precision and recall. This improvement is attributed to the ensemble's ability to leverage the short-
term memory handling of GRU, the sequence modeling capacity of RNN, and the long-term memory retention of 
LSTM. 

 
Table 1. Performance comparison on CIC-DDoS2019 Dataset. 
 

Model Accuracy Precision Recall F1-Score AUC 

RNN 95.2% 94.7% 95.6% 95.1% 0.958 

GRU 96.1% 95.9% 96.3% 96.1% 0.967 

LSTM 96.4% 96.2% 96.7% 96.4% 0.972 

Hybrid (RNN+GRU+LSTM) 97.3% 97.0% 97.6% 97.3% 0.981 

 
Figure 5 graphically illustrates the comparative performance of the four models. It is evident that the hybrid 

model consistently outperforms the individual deep learning models across all key metrics. The ROC curves in Figure 
6 further support this finding, with the hybrid model exhibiting the highest area under the curve, indicating superior 
discriminative capability.  

 
 
Figure 5. Accuracy, Precision, Recall, and F1-Score comparison of models. 

 
Figure 6 presents the ROC Curve comparison for the RNN, GRU, LSTM, and Hybrid models. The curve 

demonstrates the trade-off between the True Positive Rate (TPR) and the False Positive Rate (FPR) across various 
threshold values. Among the four models, the Hybrid model achieves the highest Area Under the Curve (AUC) of 
0.981, indicating superior classification performance. This is followed by the LSTM with an AUC of 0.972, the GRU 
with 0.967, and finally, the RNN with 0.958. These values clearly reflect the enhanced detection capability of the 
Hybrid model, making it the most effective for distinguishing between normal and attack traffic in the dataset. The 
hybrid ensemble is particularly effective at capturing diverse temporal patterns in packet flows, which is crucial for 
identifying stealthy DDoS behavior. 
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Figure 6. ROC Curve Comparison for RNN, GRU, LSTM, and Hybrid models.  

The results validate the efficacy of the proposed RNN-GRU-LSTM ensemble model in enhancing DDoS 
detection. The combination of multiple temporal learning architectures enables the model to learn complex 
relationships in sequential data, ultimately improving detection accuracy and reducing misclassification rates. This 
makes the hybrid approach a viable candidate for real-world deployment in next-generation IDS frameworks. 

5. CONCLUSION  

The proposed hybrid RNN-GRU-LSTM model demonstrates superior capability in accurately detecting 
Distributed Denial of Service (DDoS) attacks across modern IDS datasets, outperforming standalone recurrent 
architectures in terms of accuracy, precision, recall, and F1-score. By leveraging the complementary strengths of 
RNNs for sequential pattern learning, GRUs for efficient memory usage, and LSTMs for long-term dependency 
retention, the ensemble model effectively captures complex temporal dynamics in network traffic. Its consistent 
performance across multiple datasets and evaluation metrics confirms its robustness, scalability, and practical 
applicability for real-time intrusion detection systems in evolving cyber threat environments.  

APPENDIX 

Appendix A: List of symbols. 
 

Symbol Meaning 

𝑥 : Input feature value 

𝑥 : Minimum value of  𝑥 feature 
𝑥௫  : Maximum value of  𝑥 feature 
𝑥  : Normalized feature 

ℎ௧ : Hidden state at time step 

𝑊௫  and 𝑊 : Input-to-hidden and hidden-to-hidden RNN weight matrices 

𝑏 : Bias vector for the RNN hidden layer 

𝑓௧, 𝑖௧ and 𝑜௧ : Forget, input, and output gate activations of LSTM 

�̃�௧ : Candidate cell state in LSTM 

𝑐௧ : Cell state of LSTM at time 
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ℎ෨௧ : Candidate hidden state in GRU 
𝑦 : Final model output (prediction), via sigmoid activation 

 
Appendix B: List of acronyms. 

 
Acronym Meaning 

DDoS : Distributed Denial of Service 
IDS : Intrusion Detection System 

RNN : Recurrent Neural Network 
GRU : Gated Recurrent Unit 

LSTM : Long Short–Term Memory 
SMOTE : Synthetic Minority Over-sampling Technique 

CNN : Convolutional Neural Network 

NTM : Neural Turing Machine 

IoT : Internet of Things 
ROC            : Receiver Operating Characteristic 

AUC              : Area Under the ROC Curve 
CIC-DDoS2019      : Canadian Institute for Cybersecurity DDoS 2019 dataset 

UNSW-NB15         : University of New South Wales Network-based 2015 dataset 

Adam            : Adaptive Moment Estimation optimizer 
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