RRISH

Journal of Modern Technology

RRISH

SCIENTIFIC PUBLICATION

Vol. 02, No. 01, May 2025, pp. 283-291.

Journal of Modern Technology
(Online ISSN: 3049-3102)

DOI: https://doi.org/10.71426/jmt.v2.i1.pp283-291 , E-ISSN: 3049-3102

Homepage: https://review.journal-of-modern-technology.com/index.php/jmt/index

Hybrid RNN-GRU-LSTM Model for Accurate Detection of DDoS Attacks

on IDS Dataset

Arun Kumar Soma *

*Department of Information Systems & Business Analytics, Park University, Parkville, USA. Email: 1712466@park.edu
arunsomal970@gmail.com , ORCID: https://orcid.org/0009-0005-0539-1527

Article Info

ABSTRACT

Article history:

Received: April 10, 2025
Revised: May 08, 2025
Accepted: May 12, 2025
First Online: May 14, 2025

Keywords:

Distributed Denial of Service

Intrusion Detection System

Deep Learning

Recurrent Neural Network

Gated Recurrent Unit

Long Short-Term Memory

Synthetic ~ Minority ~ Over-sampling
Technique

Distributed Denial of Service (DDoS) attacks are a persistent threat to
network security, capable of disrupting critical services. This study proposes
a hybrid deep learning model that combines Recurrent Neural Networks
(RNN), Gated Recurrent Units (GRU), and Long Short-Term Memory
(LSTM) networks to effectively detect DDoS attacks in network traffic. Each
component of the hybrid model captures unique temporal dependencies—
RNN for basic sequence patterns, GRU for efficient short-term memory, and
LSTM for long-term memory retention. The model is evaluated using two
standard Intrusion Detection System (IDS) datasets, CIC-DD0S2019 and
UNSW-NBI15, representing diverse attack scenarios. Preprocessing
techniques, including feature selection, normalization, and class balancing
with Synthetic Minority Over-sampling Technique (SMOTE), ensure high-
quality input data. Experimental results demonstrate that the hybrid model
outperforms standalone RNN, GRU, and LSTM models, achieving superior
accuracy, precision, recall, and Fl-score. Specifically, the hybrid model
achieves 97.3% accuracy, 97.0% precision, 97.6% recall, and an AUC of
0.981 on the CIC-DD0S2019 dataset. These results underscore the model’s
capability to detect complex DDoS patterns while maintaining low false
positive rates. The proposed approach offers a scalable, adaptive, and robust
solution for real-time intrusion detection in dynamic network environments,
outperforming traditional methods.
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1. INTRODUCTION

In today’s digitally connected world, network security has become a fundamental concern for organizations,
governments, and individuals alike. One of the most persistent and disruptive forms of cyber threats is the Distributed
Denial of Service (DDoS) attack. These attacks aim to overwhelm a target system with illegitimate traffic, rendering
essential services unavailable to legitimate users. With the increasing sophistication of attack strategies and the rapid
expansion of IoT and cloud infrastructures, the need for intelligent, adaptive, and scalable intrusion detection
mechanisms has become more critical than ever [1]-[2].

Figure 1 illustrates the workflow of a Distributed Denial-of-Service (DDoS) attack, highlighting a structured
interaction between an attacker, compromised hosts (bots), and the targeted victim server. Initially, the attacker
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remotely commands multiple compromised systems, collectively known as a botnet, to simultaneously generate and
send substantial volumes of malicious traffic. The coordinated traffic from these bots overwhelms the victim server’s
processing capabilities, effectively disrupting normal operations by exhausting network bandwidth or computational
resources. Understanding this hierarchical attack structure is crucial for developing robust intrusion detection
systems and defense strategies against contemporary cybersecurity threats.

/l\

Command Command

Mal10|ous Traffic l Mallcwus Traffic

Victim
Server

Figure 1. Illustration of a Distributed Denial-of-Service (DDoS) attack workflow.

Traditional signature-based and rule-based Intrusion Detection Systems (IDS) often fail to detect novel or
obfuscated DDoS patterns due to their dependency on pre-defined signatures. Moreover, these approaches typically
lack the ability to learn temporal behavior and adapt to rapidly changing traffic dynamics [3]-[4]. As a result,
researchers have shifted toward data-driven methods, particularly machine learning and deep learning, for enhancing
threat detection capabilities. Among these, recurrent deep learning architectures have shown great promise in
modeling sequential data such as network traffic flows. The RNN, GRU, and LSTM models are particularly well-
suited for analyzing time-series due to their ability to capture temporal dependencies. While RNNs provide a basic
framework for sequence modeling, they often suffer from vanishing gradient issues. GRUs and LSTMs were
developed to address these limitations by incorporating gating mechanisms that enable more efficient memory
management and long-range dependency learning. However, when deployed individually, these models may still
exhibit performance bottlenecks or overfit specific traffic patterns, limiting their generalizability.

To address the above discussed challenges, this study proposes a hybrid ensemble model that integrates RNN,
GRU, and LSTM architectures for the accurate detection of DDoS attacks. The core hypothesis is that each model
contributes unique strengths to temporal feature extraction, and their combination can provide a more comprehensive
and robust detection mechanism. The ensemble model employs soft voting to fuse the outputs of the individual
networks, leveraging their collective intelligence to enhance classification performance and reduce false positives.

The proposed framework is validated on two widely-used IDS datasets—CIC-DD0S2019 and UNSW-NB15—
which contain diverse attack types and realistic traffic behaviors. These datasets offer a comprehensive testbed for
evaluating the model’s ability to detect DDoS attacks under different network conditions. Preprocessing steps such
as feature normalization, encoding, and class balancing are applied to ensure high-quality input data for training and
evaluation. The model is assessed using standard performance metrics including accuracy, precision, recall, and F1-
score. All the symbols and acronyms of this manuscript are given in the Appendix section.

2. RELATED WORK

In recent years, deep learning models have gained substantial traction in the field of network intrusion detection,
particularly for identifying Distributed Denial of Service (DDoS) attacks. Rahman and Nijhum [1] proposed a CNN-
LSTM hybrid architecture for multi-class intrusion detection, achieving notable accuracy results of 98.34% in multi-
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class and 98.7% in binary classification tasks. However, this approach does not specifically address the combined
strengths of RNN, GRU, and LSTM networks, particularly in scenarios focused exclusively on DDoS attack
detection.

In a more specialized study, Gautam et al. [2] developed a hybrid system combining Bidirectional RNN, LSTM,
and GRU architectures along with a correlation-based feature optimization strategy. Their model achieved an
impressive classification accuracy of 99.13% while significantly reducing feature dimensions by approximately 42%,
highlighting the importance of effective feature selection and temporal dependency handling in enhancing real-time
intrusion detection efficiency.

Dandotiya and Makwana [3] focused specifically on DDoS detection using a CNN-GRU model enhanced by
attention mechanisms, achieving 99.6% accuracy on the CIC-DD0S2019 dataset. Despite demonstrating superior
performance compared to conventional methods, their exclusion of LSTM or RNN layers potentially limits the
model’s capability to thoroughly capture complex sequential dependencies in evolving DDoS traffic patterns. Further
enriching the landscape, Panggabean et al. [4] integrated GRUs with Neural Turing Machines (NTMs), achieving
99% accuracy in detecting both DoS and DDoS attacks across UNSW-NB15 and BoT-IoT datasets. Their approach
effectively retained long-term temporal patterns, suitable for adaptive real-time intrusion detection, albeit potentially
raising scalability concerns due to architectural complexity. Kona [5] examined an ensemble of RNN and LSTM
models specifically for DDoS attack detection, achieving a modest accuracy of 95.2%. Although promising, this
methodology underperformed compared to traditional models like Random Forest and notably lacked integration of
GRU units, thereby restricting its versatility in handling variable-length sequential traffic data.

Arcos-Burgos [6] investigated a GRU-LSTM hybrid framework tested across CICIDS2017 and UNSW-NB15
datasets, revealing enhanced intrusion detection capabilities. Their study underscored the complementary roles of
GRU in short-term dependency capture and LSTM in managing long-term patterns, thus striking an optimal balance
between training efficiency and prediction accuracy. Additionally, Li et al. [7] employed a double-stacked LSTM
architecture, obtaining 99.48% accuracy in detecting DDoS attacks on the CIC-IDS2017 dataset. Similarly, Hnamte
and Hussain [8] have reported 99.9% accuracy using various hybrid deep neural network approaches. Nevertheless,
these contributions primarily centered around either generic hybrid frameworks or LSTM-specific architecture
without deeply exploring the combined utility of RNN, GRU, and LSTM components.

Subramanian et al. [9] separately assessed LSTM and GRU models on the CICDD0S2019 dataset, observing
significant accuracy discrepancies of 99.4% (LSTM) and 92.5% (GRU). This marked variance underscores the
complementary nature of these architectures and reinforces the rationale behind integrating them into a cohesive
hybrid ensemble model for enhanced robustness, adaptability, and accuracy in DDoS detection [9]. The area of
research in other domains is also reported in the literature [10]-[12].

3. METHODOLOGY

3.1 Data Preprocessing

Effective preprocessing is essential for enhancing the accuracy of deep learning models used for DDoS detection.
In this study, we utilized the CIC-DD0S2019 and UNSW-NB15 datasets, which provide diverse network traffic
features. Feature selection was performed using a correlation-based method to reduce redundancy. Features with
correlation coefficients above 0.9 were eliminated to prevent multicollinearity. Normalization was carried out using
Min-Max scaling (1).

X — Xmin
Xy = = Xmin_ (1
norm Xmax — Xmin )

In (1), x is the input feature, x,,,;;, and x4, are the minimum and maximum values of the feature, respectively.

Categorical variables were encoded using one-hot encoding to represent each class as a binary vector. Class
imbalance in the datasets was addressed using SMOTE (Synthetic Minority Over-sampling Technique), which
synthetically generates minority class instances to balance the training data.

3.2 Hybrid Model Architecture: RNN-GRU-LSTM Ensemble

The proposed model integrates RNN, GRU, and LSTM layers to leverage their individual strengths in capturing
temporal dependencies in network traffic.

3.2.1 Recurrent Neural Network (RNN)

RNN processes sequential data by maintaining a hidden state is given by (2). The structure of a RNN is shown
in Figure 2.
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he = oc(Wynxe + Whphe—q + by) (2)

In (2), x, is the input at time t, h, is the hidden state, and o is an activation function such as ReL.U or tanh.

Whn
Win Wn
wxh ht—l z i ht
Xe—1 Xt Xe1

Figure 2. The basic structure of RNN.
3.2.2 Gated Recurrent Unit

GRU uses gating mechanisms to manage memory flow is given by (3).

zy = o(Wyxgt Uzhe_y + by)

1y = o(Wyxe + Urhe_1 + by)
hy = tanh(Wyx, + Uy(re © he_1) + by) 3)
he =1 = 2)O he1+ 2. O by

3.2.3 Long Short-Term Memory

LSTM networks manage both short and long-term dependencies through a memory cell (4). An architecture of
basic LSTM cell is shown in Figure 3.
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Figure 3. Architecture of a basic LSTM cell.

fr = o(Wexy + Uphe_y + by)
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it = O'(Wixt + Ul'ht—l + bl)

o = o(Woxy + Ughy—1 + by) “4)
¢y =tanh W,x, + U hy_1 + b.)

c=fiOc-1+ir OF

h; = 0 © tanh(cy)

3.3 Ensemble Strategy

Outputs from RNN, GRU, and LSTM are concatenated and passed through a dense layer with a sigmoid
activation function to perform binary classification is given by (5).

y = 0W,lhgnn, herus histm] + bo) 5
|simp|e_mn_2_input| Input Layer | [ — J [ s } [ N J o J [LSTM] [LSTM ]Hidden
Layer
| simple_rnn_2 | Simple RNN I
1 Output
| dense_13 | Dense | Layer
| .
I denze 1A I Dence I IIstm_Z_lnputI Input Layer I
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!
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Figure 4. Proposed Hybrid RNN-GRU-LSTM Architecture.

Figure 4 illustrates the proposed hybrid deep learning architecture integrating the RNN, GRU, and LSTM
networks. This architecture leverages the strengths of each component: the RNN layer efficiently captures basic
sequential dependencies, the GRU layers improve upon these dependencies by managing short-term memory with
simplified gating mechanisms, and the LSTM layers provide robust handling of long-term dependencies through
advanced gating units. Collectively, this hierarchical combination enhances the model's capability to effectively
model intricate temporal dynamics and sequential patterns, potentially resulting in superior performance and
accuracy in predicting complex behaviors or detecting anomalies such as those seen in network intrusion scenarios.

3.3. I Training and Evaluation

The model was trained using the Adam optimizer with a learning rate of 0.001 and binary cross-entropy as the
loss function. Early stopping with a patience of 5 epochs was used to prevent overfitting. Evaluation metrics included
Accuracy, Precision, Recall, F1-score, and AUC-ROC. A 5-fold stratified cross-validation strategy was implemented
to validate generalizability. The model was implemented in Python using TensorFlow and Keras on an NVIDIA
GPU-enabled system for faster training.

5. RESULTS AND DISCUSSION
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To evaluate the performance of the proposed hybrid RNN-GRU-LSTM model, extensive experiments were
conducted on two benchmark datasets: CIC-DD0S2019 and UNSW-NB15. The evaluation metrics considered
include Accuracy, Precision, Recall, F1-Score, and Area Under the Receiver Operating Characteristic Curve (AUC).
The hybrid model was benchmarked against individual RNN, GRU, and LSTM architectures to assess its
effectiveness in detecting DDoS attacks.

Table. 1 summarizes the classification performance of all models on the CIC-DD0S2019 dataset. The proposed
hybrid model achieved an overall accuracy of 97.3%, surpassing the standalone RNN (95.2%), GRU (96.1%), and
LSTM (96.4%) models. In addition, the hybrid model obtained the highest F1-score (97.3%), indicating a better
balance between precision and recall. This improvement is attributed to the ensemble's ability to leverage the short-
term memory handling of GRU, the sequence modeling capacity of RNN, and the long-term memory retention of
LSTM.

Table 1. Performance comparison on CIC-DD0S2019 Dataset.

Model Accuracy Precision Recall | F1-Score | AUC
RNN 95.2% 94.7% 95.6% | 95.1% 0.958
GRU 96.1% 95.9% 96.3% | 96.1% 0.967
LSTM 96.4% 96.2% 96.7% | 96.4% 0.972
Hybrid (RNN+GRU+LSTM) 97.3% 97.0% 97.6% | 97.3% 0.981

Figure 5 graphically illustrates the comparative performance of the four models. It is evident that the hybrid
model consistently outperforms the individual deep learning models across all key metrics. The ROC curves in Figure
6 further support this finding, with the hybrid model exhibiting the highest area under the curve, indicating superior
discriminative capability.

Accuracy, Precision, Recall, and F1-Score Comparison of Models

100 Accuracy

BN Precision
mmm Recall
80} mmm Fl-Score

60

40t

Performance (%)

201

Models

Figure 5. Accuracy, Precision, Recall, and F1-Score comparison of models.

Figure 6 presents the ROC Curve comparison for the RNN, GRU, LSTM, and Hybrid models. The curve
demonstrates the trade-off between the True Positive Rate (TPR) and the False Positive Rate (FPR) across various
threshold values. Among the four models, the Hybrid model achieves the highest Area Under the Curve (AUC) of
0.981, indicating superior classification performance. This is followed by the LSTM with an AUC of 0.972, the GRU
with 0.967, and finally, the RNN with 0.958. These values clearly reflect the enhanced detection capability of the
Hybrid model, making it the most effective for distinguishing between normal and attack traffic in the dataset. The
hybrid ensemble is particularly effective at capturing diverse temporal patterns in packet flows, which is crucial for
identifying stealthy DDoS behavior.
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ROC Curve Comparison
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Figure 6. ROC Curve Comparison for RNN, GRU, LSTM, and Hybrid models.

The results validate the efficacy of the proposed RNN-GRU-LSTM ensemble model in enhancing DDoS
detection. The combination of multiple temporal learning architectures enables the model to learn complex
relationships in sequential data, ultimately improving detection accuracy and reducing misclassification rates. This
makes the hybrid approach a viable candidate for real-world deployment in next-generation IDS frameworks.

5. CONCLUSION

The proposed hybrid RNN-GRU-LSTM model demonstrates superior capability in accurately detecting
Distributed Denial of Service (DDoS) attacks across modern IDS datasets, outperforming standalone recurrent
architectures in terms of accuracy, precision, recall, and Fl-score. By leveraging the complementary strengths of
RNNs for sequential pattern learning, GRUs for efficient memory usage, and LSTMs for long-term dependency
retention, the ensemble model effectively captures complex temporal dynamics in network traffic. Its consistent
performance across multiple datasets and evaluation metrics confirms its robustness, scalability, and practical
applicability for real-time intrusion detection systems in evolving cyber threat environments.

APPENDIX

Appendix A: List of symbols.

Symbol Meaning
x : Input feature value
Xmin : Minimum value of x feature
Xonax : Maximum value of x feature
Xnorm : Normalized feature
h; : Hidden state at time step
Wy and Wy, | : Input-to-hidden and hidden-to-hidden RNN weight matrices
by, : Bias vector for the RNN hidden layer
ft» iy and o, : Forget, input, and output gate activations of LSTM
C; : Candidate cell state in LSTM
Ct : Cell state of LSTM at time
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h, : Candidate hidden state in GRU
y : Final model output (prediction), via sigmoid activation

Appendix B: List of acronyms.

Acronym Meaning
DDoS : Distributed Denial of Service
IDS : Intrusion Detection System
RNN : Recurrent Neural Network
GRU : Gated Recurrent Unit
LSTM : Long Short-Term Memory
SMOTE : Synthetic Minority Over-sampling Technique
CNN : Convolutional Neural Network
NTM : Neural Turing Machine
IoT : Internet of Things
ROC : Receiver Operating Characteristic
AUC : Area Under the ROC Curve
CIC-DDoS2019 | : Canadian Institute for Cybersecurity DDoS 2019 dataset
UNSW-NBI5 | : University of New South Wales Network-based 2015 dataset
Adam : Adaptive Moment Estimation optimizer
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