
Journal of Modern Technology 
Vol. 02, No. 01, April 2025, pp. 220-234. 

DOI: https://doi.org/10.71426/jmt.v2.i1.pp220-234 , E-ISSN: 3049-3102 
 

Homepage: https://review.journal-of-modern-technology.com/index.php/jmt/index  
 

  

220 

Sustainable Strategies for Energy Management in Buildings and Electric 
Vehicle Charging 

 
Seyed Hossein Taheri1, Parsa Tayebati2*, Mohammad Parhamfar3 

1Department of Convergent Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran, 
Email: s.h.taheri2001@gmail.com , ORCID: https://orcid.org/0009-0000-2557-2388  

2*School of Business, Sheikh Bahaei University, Isfahan, Iran, Email: parsatayebati2@gmail.com 
3Independence Researcher and consultant, Isfahan, Iran. Email: drparhamfar@gmail.com , ORCID: https://orcid.org/0000-

0002-3442-8270 

Article Info  ABSTRACT 

Article history: 

Received: Feb 14, 2025  
Revised: March 14, 2025 
Accepted: March 20, 2025  
First Online: March 20, 2025 
Final Online: April 20, 2025 
 
 

 
This study investigates the integration of electric vehicle (EV) 
charging stations into buildings as a sustainable strategy to reduce 
greenhouse gas emissions and promote clean energy adoption. 
While this initiative offers significant environmental advantages, it 
also introduces challenges such as high installation costs, the need 
for electrical infrastructure upgrades, and potential power quality 
concerns. To address these issues, the research utilizes Pareto 
frontier analysis and multi-objective optimization (MOO) 
techniques to identify optimal trade-offs among key objectives, 
including cost, energy efficiency, and system reliability. Three 
strategies (A, B, and C) are assessed, with Strategy C emerging as 
the most balanced and cost-effective option. The findings 
underscore the importance of prioritizing both economic viability 
and operational efficiency in decision-making processes. Overall, 
integrating EV charging stations into buildings demonstrates 
considerable potential as a step toward sustainability. However, a 
thorough evaluation of all influencing factors is critical to ensuring 
long-term success and alignment with global environmental goals. 
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1. INTRODUCTION 
 
 Nowadays, energy management and optimizing energy usage have become the most important sector in different 
scales such as residential [1],[2]. Energy plays a crucial role in modern society, driving economic growth and improving 
living standards [3]. However, the methods of energy production and consumption have significant environmental 
impacts [4], [5].  Fossil fuels, while providing a substantial portion of our energy needs, contribute to air and water 
pollution, greenhouse gas emissions, and climate change [6]. Conversely, renewable energy sources like solar, wind, 
and hydroelectric power offer sustainable alternatives that reduce environmental harm [5]. Transitioning to cleaner 
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energy not only mitigates ecological degradation but also promotes public health and enhances energy security, making 
it vital for a sustainable future [7]. 

        Electric vehicles (EVs) are experiencing a surge in popularity as a sustainable and environmentally friendly mode 
of transportation [8]. According to the International Energy Agency (IEA), the global stock of EVs reached 11.2 million 
in 2020, a significant increase from 7.2 million in 2019, and is projected to reach 145 million by 2030. However, one 
of the primary challenges faced by EV owners is the availability of convenient and reliable charging infrastructure 
which is connected to power systems [9]. This is where buildings can play a crucial role by providing EV charging 
stations for their residents, employees, or visitors [10]. One of the key benefits of connecting buildings to EV charging 
stations is the potential to enhance the attractiveness and value of the buildings. For instance, residential buildings that 
offer EV charging stations can attract more tenants who own or plan to purchase EVs, leading to increased satisfaction 
and loyalty [11].  

  About 68% of EV owners in the United States consider access to home charging as a critical factor in their purchase 
decision. Similarly, commercial buildings that provide EV charging stations can attract more customers and employees 
who prefer driving EVs, thereby bolstering their reputation and brand image [12]. A study conducted by the Rocky 
Mountain Institute estimated that workplace charging could increase EV adoption by 6% to 24% by 2030. Moreover, 
connecting buildings to EV charging stations can contribute to the reduction of greenhouse gas emissions and energy 
consumption by utilizing renewable energy sources or employing smart grid technologies to power the charging 
stations [13]. This aligns with the sustainability goals of buildings and promotes compliance with environmental 
regulations. For example, the European Union has set a target of installing at least one recharging point per ten EVs by 
2025 [14]. However, connecting buildings to EV charging stations also entails challenges and complexities. One of the 
primary challenges is the high cost and intricacy associated with installing and maintaining the charging infrastructure. 
Building owners may need to upgrade their electrical infrastructure, obtain necessary permits and approvals, and bear 
the expenses of electricity and maintenance fees. The installation cost of a public charging station in the United States 
can range from $300 to $50,000, depending on factors such as station type, power capacity, and location. Another 
challenge lies in the potential impact of charging stations on the power quality and reliability of buildings. Charging 
stations can lead to voltage fluctuations, harmonics, or power outages, particularly during peak demand periods. These 
issues can affect the performance and safety of electrical equipment and appliances within the buildings [15]. One of 
the primary challenges is the high upfront cost of installing EV charging stations and the challenge includes the cost of 
purchasing and installing the charging equipment, as well as any necessary site upgrades. For buildings that require 
significant electrical infrastructure upgrades, such as new wiring or transformers, these costs can be substantial [16]. 
Integrating EV charging stations often necessitate extensive electrical upgrades to the building, which can include 
enhancing the capacity of the building’s electrical system, installing new circuit breakers, and potentially upgrading 
transformers. These upgrades are essential to ensure the building can handle the increased electrical load from multiple 
EV charging stations without compromising safety or reliability. The addition of EV charging stations can lead to 
power quality issues within the building’s electrical system. This includes problems such as voltage fluctuations, 
harmonic distortions, and increased peak demand, which can affect the overall stability and efficiency of the building’s 
power supply. Addressing these issues may require the installation of power quality improvement devices and ongoing 
monitoring. 

   According to a study by the Electric Power Research Institute, the peak load from EV charging is projected to 
increase by 38% by 2030, necessitating additional investments in grid infrastructure. To address these challenges, the 
adoption of best practices and solutions for connecting buildings to EV charging stations is crucial. Conducting 
feasibility studies and demand analyses before installation is one such best practice. This enables buildings to determine 
the optimal number, type, and placement of charging stations based on factors like available space, budget, and 
projected usage. Implementing a smart charging system is another effective approach, as it allows for the monitoring 
and control of the charging process, optimizing power distribution and consumption. This mitigates power quality and 
reliability issues while reducing electricity costs and emissions. Smart charging solutions include vehicle-to-grid 
(V2G), vehicle-to-building (V2B), and vehicle-to-home (V2H) technologies, enabling EVs to communicate and 
exchange power with the grid, building, or home, respectively. According to the IEA, smart charging has the potential 
to decrease the peak load from EV charging by 40% to 60% by 2030. Connecting buildings to EV charging stations 
presents numerous benefits and challenges. By embracing the best practices and innovative solutions, buildings can 
contribute to the widespread adoption of EVs, enhance their value, reduce greenhouse gas emissions, and promote 
sustainable transportation. As the global demand for EVs continues to rise, it is imperative to prioritize the development 
of robust charging infrastructure within buildings to support the growth of this transformative technology [17]. 
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  The authors in [18], created an advanced bi-level building management system that allows electric car scheduling 
and optimal temperature control in smart buildings. This system satisfies a variety of needs, including demand response 
and electric vehicle charging, while efficiently minimizing costs. It provides a thorough model for charging electric 
vehicles that accounts for particular charging station specifications as well as three-phase unbalanced systems. 
Furthermore, the system has a dispersed strategy to maximize fan coil management, allowing for accurate room 
temperature regulation. Comprehensive testing at the Savona Campus has produced excellent results, including a 20% 
daily cost decrease when compared to a basic heuristic approach. In addition, the system can save up to 35% by utilizing 
its response capabilities. The authors in [19], examined an electric vehicle (EV) charging system in a typical Malaysian 
home that is powered by building-integrated photovoltaic (BIPV) technology. Three different BIPV systems with 
different battery storage capacities were created and evaluated. The energy output for the year varied between 7.19 and 
8.05 MWh. With the greatest savings in greenhouse gas (GHG) emissions  137,321,924 kg  CO2  and the lowest levelized 
cost of electricity (LCOE) was the grid-connected system without batteries.   Genetic algorithms can be used to optimize 
the cost of electric vehicle production [20]. 

  A decision model for energy sharing between an electric vehicle (EV) charging station and a building was presented 
in [21]. To balance energy demand, the model makes use of vehicle-to-building (V2B) and vehicle-to-grid (V2G) 
integration. The study analyzes the economic effectiveness of the V2G/V2B integration while considering a variety of 
driving behaviors and building categories. The study's conclusions offer insightful advice for creating intelligent 
communities and suggest the best integration techniques. In order to improve building energy management and power 
supply reliability, the authors in [22] investigated the integration of smart buildings and plug-in hybrid electric vehicles 
(PHEVs) using particle swarm optimization (PSO) and multi-agent technology. The primary goal is to reduce power 
consumption and increase customer comfort. Combining PHEVs allows the system to take advantage of their combined 
energy and capacity, which enhances the building's operational and financial stability. To verify that their suggested 
method works, the researchers run simulations and case studies. Robledo et al. presented a demonstration project 
conducted in the Netherlands, focusing on achieving a net-zero energy residential building [23]. It combines building-
integrated photovoltaic (BIPV) solar panels and a hydrogen fuel cell electric vehicle (FCEV) in a vehicle-to-grid (V2G) 
operation. The project evaluates the FCEV's performance in providing power to the grid, with a Tank-To-AC-Grid 
efficiency of 44%. Two operating modes for the FCEV in a residential microgrid are identified: fixed power output 
and load following. Batteries like lithium ion [24] play a critical role in electric vehicles, serving as the primary energy 
storage system that powers the vehicle and determines its range, performance, and efficiency [25].  Electric vehicles 
have some challenges; low phase noise class-C oscillator can enhance signal stability and efficiency in electric vehicle 
communication and control systems [26]. This improved class-C oscillator can enhance signal reliability and energy 
efficiency in electric vehicle communication systems [27]. The studies [28]-[30]  contribute to electric vehicle 
advancements through optimized supply chains, scalable data forwarding, and improved lithium-sulfur battery 
performance. 

        In Orebro, Sweden, a PV system design for residential and EV charging demand is proposed by Khan et al [31]. It 
assesses how various PV systems and roof slopes perform in terms of technology, economy, and the environment. A 
roof angle of 45° has the shortest payback period, and bifacial photovoltaic systems perform better in terms of energy 
generation. Certain economic statistics apply to the monofacial photovoltaic system with a 30° slant. Because of 
Sweden's low grid emission factor, EVs have a greater impact on reducing GHG. This research offers guidance on how 
to satisfy location-specific energy needs. Chai et al. developed a two-stage optimization technique for the Vehicle-to-
Grid (V2G) scheme, considering the perspectives of both building owners and EV owners [32]. The technique focuses 
on the travel convenience of EV owners by providing two V2G options. The first stage involves day-ahead optimization 
(DAO) to minimize the building's maximum demand. The second stage involves real-time optimization (RTO) to adjust 
the V2G operation based on actual vehicle behaviors. Simulations show that the proposed technique can adjust EV 
charging or discharging in real-time. A cost-benefit analysis is also conducted to assess the savings and rewards for 
both the building and EV owners. 

  Zhang et al. used a multivariate load prediction model for buildings integrated with EVs considering occupant travel 
[33]. The model incorporates different methods to obtain travel variables and constructs an occupant travel behavior 
model using Monte Carlo simulation. Data-driven approaches such as artificial neural networks, LSTM, and TPA-
LSTM are used to build the load prediction model. The results show good synchronization between building load and 
EV charging load, with the TPA-LSTM model achieving high prediction accuracy. This study provides an effective 
tool for accurate load prediction in EV-integrated buildings. Mansouri et al. [34] presented a nest framework to address 
flexibility challenges in renewable-based transmission and distribution systems. The framework utilizes distributed 
energy resources (DERs), smart buildings, and electric vehicle fleets to provide flexibility. A novel demand response 
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program (DRP) is designed with time-varying tariffs based on flexibility requirements. The coordination between the 
transmission system operator (TSO) and distribution system operator (DSO) is formulated as a computationally 
tractable problem. Battery energy storage systems (BESSs) manage extreme conditions. Simulation results demonstrate 
improved economic, technical, and security aspects of TSO-DSO coordination. The work of reference [35] introduces 
an advanced Smart Energy Management System (SEMS) featuring a one-hour resolution for optimizing energy use in 
nearly-zero energy buildings (NZEB) through Vehicle-to-Building (V2B) technology. The system reduces grid reliance 
by 65% and carbon emissions by 64%, integrating EV charging/discharging schedules with renewable energy resources 
and battery storage. It also incorporates real-world EV parking patterns and considers battery degradation costs in its 
economic analysis. The study highlights the cost-effectiveness and sustainability of combining photovoltaic (PV) 
systems with V2B, contributing to the development of net-zero cities. 

   Reference [13] examines the integration of plug-in electric vehicles (PEVs) with energy-flexible buildings, 
focusing on the challenges of PEV charging on building power demand and co-management strategies for optimized 
energy use. It highlights the role of microgrid technology in combining distributed energy sources, storage, and diverse 
consumers to accommodate growing PEV charging demands while minimizing impacts on power demand profiles and 
distribution transformers. The paper provides a comprehensive review of current research on co-management 
technologies and identifies key factors and co-benefits of integrated energy systems. It also addresses the need for 
improved control methods to support the increasing penetration of PEVs in buildings. The work in of reference [36] 
explores how PEVs can contribute to the self-sustainability of nearly zero-energy buildings (ZEBs) by supplying part 
of their battery capacity to residential appliances. The study focuses on minimizing energy exchange with the external 
grid while considering the limited cooperation of PEV owners due to their need to maintain a preset driving range. It 
also examines the role of fixed battery systems in compensating for the variability in PEV owners' cooperation. Ref. 
[37] presents two electric energy management systems (EMSs) designed for a grid-connected residential neighborhood 
with EVs, battery storage, and solar photovoltaic (PV) generation. The EMSs aims to minimize electricity costs without 
affecting residents' energy needs or travel patterns. The study compares centralized and decentralized EMSs, 
accounting for battery capacity degradation and its costs, using real data from a high-density residential building in 
Sydney, Australia. Simulation results show that the centralized EMS outperforms the decentralized EMS in cost savings 
and significantly reduces reliance on grid energy compared to unoptimized strategies. 

  Integrating EV charging stations into buildings significantly reduces greenhouse gas emissions by promoting the 
use of electric vehicles over traditional gasoline-powered vehicles. EVs produce zero tailpipe emissions, thereby 
decreasing the overall carbon footprint. When combined with renewable energy sources, the emissions reduction can 
be even more substantial. 

  The shift from internal combustion engine vehicles to electric vehicles helps improve air quality, especially in 
urban areas. EVs do not emit pollutants such as nitrogen oxides and particulate matter, which are major contributors to 
air pollution and respiratory diseases. This transition contributes to cleaner air and better public health outcomes. 
Integrating EV charging stations with smart building energy management systems can optimize energy use and improve 
overall energy efficiency. By using renewable energy sources like solar or wind power, buildings can reduce their 
reliance on fossil fuels, further lowering their environmental impact. Buildings equipped with EV charging stations can 
take advantage of distributed energy resources (DERs), such as solar panels and energy storage systems. This 
integration allows for more efficient use of renewable energy, reducing the need for grid electricity and minimizing 
energy losses. Additionally, EVs can act as mobile energy storage units, providing backup power to buildings during 
peak demand or emergencies. Promoting the use of EVs reduces dependency on fossil fuels, thereby conserving finite 
natural resources. This shift supports the transition to a sustainable and resilient energy system, decreasing the 
environmental degradation associated with fossil fuel extraction [38], [39]. 

  Electric vehicles are quieter than their internal combustion engine counterparts, leading to reduced noise pollution, 
especially in densely populated urban areas. This improvement in noise levels enhances the overall quality of life for 
residents. Integrating EV charging stations into buildings aligns with green building standards and certifications, such 
as LEED (Leadership in Energy and Environmental Design). These standards encourage the adoption of sustainable 
practices, resulting in more environmentally friendly and energy-efficient buildings. By providing convenient access 
to EV charging stations, buildings can encourage the adoption of electric vehicles and sustainable transportation habits. 
This shift can reduce traffic congestion, lower emissions, and promote a healthier environment. The widespread 
integration of EV charging stations can influence urban planning and development strategies. Cities can design 
infrastructure that supports sustainable transportation, reduces urban sprawl, and promotes the development of 
walkable, transit-friendly communities. Investing in EV charging infrastructure can create economic opportunities and 
environmental benefits simultaneously. Job creation in the green technology sector, reduced healthcare costs due to 
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improved air quality, and enhanced energy security are just a few examples of the positive synergies that can be 
achieved. 

  Effective stakeholder engagement is crucial for successfully integrating EV charging stations into buildings. 
Government and regulatory bodies set supportive policies and incentives, ensuring compliance. Building owners and 
property managers oversee installation and maintenance, while utility companies provide necessary electrical 
infrastructure and manage grid stability. EV manufacturers and charging equipment providers supply and support high-
quality technology. Environmental organizations advocate for sustainable transportation, and local communities and 
EV owners offer feedback and participation in pilot programs. Financial institutions and investors provide funding and 
evaluate economic viability, and technology providers develop smart energy management systems to enhance user 
experience. By collaborating effectively, these stakeholders ensure the efficient and sustainable integration of EV 
charging stations. Government incentives and supportive policies create a favorable environment, while utility 
companies manage energy distribution and grid performance. Building owners and property managers ensure safety 
and compliance, and EV manufacturers provide reliable technology. Environmental organizations and local 
communities promote adoption and accessibility, and financial institutions fund the infrastructure. Technology 
providers optimize integration, ensuring the infrastructure meets the needs of all users. This collective effort balances 
costs, efficiency, and sustainability, contributing to the broader goal of reducing greenhouse gas emissions and 
promoting clean energy solutions. 
 The COVID-19 pandemic significantly disrupted the adoption of electric vehicles and the development of related 
infrastructure due to economic slowdowns and supply chain interruptions. Despite these challenges, EV sales continued 
to grow in regions with strong governmental support, such as China and Europe. These areas saw increased investments 
in EV infrastructure, with policies and incentives encouraging EV adoption even amidst the pandemic. However, in 
other regions, market recovery was slower, and consumer purchasing power was affected, potentially delaying broader 
adoption. Consumer behavior shifted as economic uncertainties and reduced oil prices made cost-conscious decisions 
more prevalent. Although EVs generally offer lower total ownership costs, the narrowed cost advantage due to falling 
gasoline prices influenced purchasing decisions in some markets. The pandemic also highlighted the need for enhanced 
energy management strategies and flexible infrastructure to accommodate fluctuations in demand and supply chains. 
Governments and private sectors responded with various policies, subsidies, and investments to mitigate these 
disruptions and support the transition to EVs. Long-term, the pandemic underscored the importance of sustainable 
transportation solutions and the resilience of the EV market. It prompted a reevaluation of urban planning and energy 
management to better integrate EV infrastructure with renewable energy sources. Future research should focus on 
understanding the long-term impacts of COVID-19 on EV adoption, examining how policy adjustments and 
technological advancements can continue to support the growth of EV infrastructure and the broader shift towards 
clean energy solutions. Integrating smart technologies into EV charging stations can greatly enhance efficiency, 
reliability, and user experience. Smart energy management systems use real-time data and advanced algorithms to 
optimize energy consumption, balancing demand and reducing peak loads. The Internet of Things (IoT) connects 
devices for seamless communication, enabling real-time monitoring, predictive maintenance, and remote 
troubleshooting, ensuring the infrastructure remains efficient. Also, machine learning has several applications [40].  

  Smart grid integration allows buildings to participate in demand response programs, adjusting charging loads based 
on grid conditions to stabilize the grid and reduce costs. User-friendly applications provide real-time information on 
charging status and availability, enhancing convenience. Additionally, artificial intelligence can predict energy demand 
and optimize charging schedules, while renewable energy integration maximizes the use of clean energy for charging 
[41]. By incorporating these technologies, EV charging infrastructure can be more sustainable and efficient, supporting 
broader environmental goals and improving overall energy management. This cohesive approach enhances the 
relevance and effectiveness of the charging system, ensuring it meets the needs of all stakeholders. 

 
2. METHODS 

  The integration of EV charging stations into buildings requires a comprehensive system modeling approach to 
balance energy consumption, cost efficiency, and environmental impact. To achieve this, the study employs a multi-
objective optimization framework that considers various operational and environmental variables. Key components of 
the model include energy demand profiles, building occupancy patterns, meteorological data, and EV charging habits. 
Energy demand profiles are modeled using historical and predictive data, enabling the system to adapt to fluctuations 
in usage. Building occupancy patterns, which significantly influence energy consumption, are analyzed through 
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dynamic scheduling and simulation techniques. Additionally, meteorological data is integrated into the model to 
account for the effects of weather conditions on both building energy needs and renewable energy generation. 

  The model also incorporates detailed simulations of EV charging habits, including charging frequency, duration, 
and energy requirements. By analyzing real-world data and predicting trends, the model can capture the variability in 
EV energy demand. The interaction between building energy systems and EV stations is represented through Mixed 
Integer Linear Programming (MILP), which allows for the inclusion of both discrete and continuous variables. This 
modeling approach facilitates the evaluation of different operational scenarios and trade-offs, ensuring that the system 
remains flexible and reliable under varying conditions. The integration process also considers uncertainties, such as 
changes in user behavior or grid availability, by implementing robust optimization techniques. Through this detailed 
and adaptive modeling, the system is designed to achieve optimal performance in terms of cost, energy efficiency, and 
sustainability. Multiple competing objective functions are present in multi-objective MILP issues. This implies that no 
single ideal solution is able to fulfil every requirement at the same time. Alternatively, there are several Pareto-optimal 
alternatives. In terms of objective values, these are the only possible alternatives that do not dominate any other answer 
[42]. A Pareto operation is the process of identifying and evaluating these Pareto optimal solutions for a particular 
multi-objective MILP problem. Pareto operations can be carried out in a variety of ways, each with unique benefits 
and drawbacks. The situation and the needs of the decision-maker determine which approach is best [43]. 

1. Multiple-weighted sums method: The multiple-weighted sums approach combines all of the objective functions into 
a single objective function by giving each one a weight. Different Pareto optimum solutions can be achieved by 
adjusting the weights. However, this approach might not be able to produce the whole Pareto front, particularly in 
the case of non-convex or discontinuous situations [44]. 

        In the Multiple-weighted sums method, the multi-objective problem is transformed into a single-objective 
problem by assigning a weight to each objective function and then aggregating them into a single objective function. 
The mathematical formulation of this method can be represented as follows: 

  Given a multi-objective MILP problem with 𝑛 objective functions 𝑓1, 𝑓2, ..., 𝑓𝑛, and a set of weights 𝑤1, 𝑤2, ..., 
𝑤𝑛, the single-objective function F can be calculated as (1). 

 
     𝐹(𝑥) = ∑ 𝜔௜

௠
௜ୀଵ ∗ 𝑓௜(𝑥)                                                                                                    (1) 

                                                                                                      
  By varying the weights 𝑤1, 𝑤2, ..., 𝑤𝑛, different Pareto optimal solutions can be obtained. Each solution represents 

a different trade-off between the objectives. The weights can be adjusted to reflect the decision-maker's preferences, 
allowing for a customized analysis that considers the specific priorities and constraints of the problem at hand. 
However, it’s important to note that this method may not be able to generate the entire Pareto front, especially for 
non-convex or discontinuous problems. 

2.  Epsilon-constrained method: This technique fixes the values of all but one objective function inside a set of 
boundaries (epsilon), converting the multi-objective MILP issue into a sequence of single-objective MILP problems. 
Every single-objective MILP problem can have a Pareto optimum solution by solving it. One can find alternative 
Pareto optimum solutions by varying the epsilon values. The full Pareto front can be generated by this method, 
although it might need a lot of epsilon values to accomplish. 

 
Given objective functions f1(x), f2(x)…fm(x) to be optimized, and constraint functions gj(x) ≤ 0, j=1,2,...,p derived 
from the remaining objectives, the epsilon-constrained problem can be formulated as: 
Minimize: 
f1(x) 
Subject to:                                                                                                                                    (2)                                                                                                              
    fi(x) ≤ ϵi, for i=2,3...,m 
    gj(x) ≤ 0, for j=1, 2...,p                                                                                                              (3) 
 
In (2), the primary objective f1(x) is optimized while the other objectives are treated as constraints with epsilon 
bounds. By adjusting the epsilon values, a set of Pareto-optimal solutions can be identified. This method helps in 
exploring the trade-offs between different objectives in multi-objective optimization problems. 

3. Multiple single-objective Pareto sampling: By sampling the objective space and resolving a single-objective MILP 
problem at every sample point, this technique yields a set of Pareto optimal solutions. In order to fully cover the 
Pareto front, the sample points were selected. This algorithm may not be able to produce all of the Pareto optimal 
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solutions, but it can handle many objectives and determine the boundaries and discontinuities of the Pareto front 
[45]. 
The formulation for this approach can be represented as follows: 

Given: 
 Objective functions: f1(x), f2(x)..., fm(x) 
 Decision variables: x  = (x1, x2,...,xn) 
 Constraints: gi(x)  ≤ 0,i=1,2...,p 
The MILP problem at each sample point can be formulated as: 
Minimize: 

fj(x) 
Subject to: 

     fi(x) ≤ ϵi, for i≠j                                                                                                                                                 (4) 
  gi(x) ≤ 0, for i=1,2...,p                                                                                                                                    (5) 

 
Here, j represents the objective function being optimized at that sample point, while the other objective functions are 
treated as constraints with epsilon bounds. By solving this MILP problem at multiple sample points across the objective 
space, a diverse set of Pareto optimal solutions can be obtained, contributing to a better understanding of the Pareto 
front's shape and characteristics . 

4. Pareto-based multi-objective machine learning: This approach approximates the Pareto front and the goal functions 
of a multi-objective MILP issue using machine learning techniques. The Pareto optimal solutions acquired through 
alternative methods are employed to train the machine learning models. Subsequently, the objective values and 
Pareto optimality of novel solutions can be predicted by the trained models. This method may result in some 
inaccuracies and uncertainties in the outcomes, but it can also save the computational cost and time needed to answer 
a multi-objective MILP problem. 

The formulation for this approach involves using machine learning models to predict the objective values and 
Pareto optimality of solutions. Here is a general representation: 
Given: 
 Objective functions: f1(x), f2(x)..., fm(x)      
 Decision variables: x = (x1, x2..., xn) 

The machine learning model is trained using Pareto optimal solutions x∗ and their corresponding objective 
values f(x∗) acquired from alternative methods. 

The trained machine learning model can then predict the objective values f(x) and Pareto optimality of a new 
solution xx. The formulation can be represented as follows (6). 

Predict: 
     f^(x)= ML (x∗, f(x∗), x)                                                                                                                   (6) 

In (6), f^(x) is the predicted objective values for the new solution xx, ML represents the trained machine learning 
model using the Pareto optimal solutions x∗ and their objective values f(x∗) as training data. 

  By utilizing machine learning techniques in this manner, the Pareto-based multi-objective machine learning 
approach aims to provide efficient predictions of objective values and Pareto optimality for new solutions in multi-
objective MILP problems. 

        Using the Multiple-Weighted Sums approach, the Pareto operation for the trade-off analysis between the building 
and the charging station is carried out in this work. Because it enables a thorough examination of the trade-offs between 
various objectives, this approach is especially helpful in scenarios where there are several competing goals [46]. By 
giving each objective function a weight and then combining them into a single objective function, the multiple-
weighted sums approach operates. Different Pareto optimum solutions can be achieved The Multiple-weighted sums 
approach transforms the multi-objective problem into a single-objective problem by assigning a weight to each 
objective function and then aggregating them into a single objective function. By adjusting the weights, different Pareto 
optimal solutions can be achieved, which represent different trade-offs between objectives. This method is particularly 
useful in scenarios with multiple competing goals. 

  The research considers several items, such as fluctuations in energy use and EV charging habits, to create a reliable 
and flexible integration system. By modeling variables like occupancy levels, meteorological conditions, and usage 
patterns, the integration process aims to optimize energy usage, maximize cost savings, and reduce environmental 
impact. Collaborative strategies are also emphasized for their superiority in achieving cost savings compared to non-
cooperative alternatives. By adjusting the weights, this offers a variety of options, each of which represents a unique 
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trade-off between the goals. The Multiple-weighted sums method's simplicity and convenience of use are among its 
key benefits. It is easy to apply to a variety of issues since it doesn't require any complicated transformations or extra 
constraints. Its adaptability is an additional benefit. The decision-makers preferences can be reflected in the weights, 
enabling a tailored analysis that considers the priorities and restrictions of the given problem [47]. 

        In order to create a reliable and flexible integration system, our research considers many uncertainties, including 
fluctuations in energy use and EV charging habits. To gain a deeper understanding of the energy demand profile, we 
will investigate variables such as shifting occupancy levels, meteorological conditions, and usage patterns. To further 
improve the integration process, we will model the charging habits and durations of EVs. Our goals are to reduce the 
environmental impact of the vehicle-to-building integration, maximize cost savings, and optimize energy usage by 
including these uncertainties into our study. Since collaborative strategies have been shown to outperform non-
cooperative alternatives in terms of cost savings, they will be crucial to accomplishing these goals. To advance vehicle-
to-building systems, we can leverage insights and methodologies from a wide array of research articles and studies. 
These scholarly works provide valuable strategies to address the inherent uncertainties and challenges in V2B 
integration. By analyzing existing literature, we can refine energy forecasting models, improve collaborative control 
mechanisms, and enhance algorithms for optimizing energy distribution between vehicles and buildings [48]-[52].  
Moreover, incorporating diverse approaches discussed in research such as demand-response strategies, advanced 
energy storage systems, and renewable energy integration can significantly elevate the reliability and sustainability of 
V2B systems. These findings not only support environmental goals but also contribute to creating scalable, adaptive 
solutions for a variety of scenarios. Collaborative research plays a pivotal role in shaping robust and innovative V2B 
integration frameworks [53]- [57]. 

 
3. DATA PREPROCESSING 

 
a. Data Collection: Gathering data on building energy consumption, EV charging habits, weather conditions, 

occupancy levels, and cost information. 
b. Data Cleaning: Handling missing values, removing duplicates, and detecting outliers to ensure high data quality. 
c. Data Transformation: Normalizing energy data, encoding categorical variables, and engineering features to 

enhance analysis. 
d. Data Integration: Merging datasets and joining tables to create a comprehensive dataset. 
e. Data Reduction: Applying dimensionality reduction techniques and sampling to streamline the dataset. 
f. Data Validation: Conducting validation checks and cross-validation to ensure data integrity. 
g. Data Analysis: Utilizing Pareto frontier analysis and Multi-Objective Optimization (MOO) to identify optimal 

trade-offs among objectives, with Strategy C emerging as the most balanced and cost-effective solution. 
 

4. RESULTS AND DISCUSSIONS 

  In this section, we delve into the simulation results of the proposed cooperative decision-making model for vehicle-to-building 
integration. The decision-making process is intricately divided into hourly segments that span the entirety of a day. Our model 
leverages hourly data concerning the thermal and electrical energy consumption of a mid-sized office building in Chicago on a 
summer day. Furthermore, the cost of energy from a nearby electrical source is meticulously factored in when scrutinizing 
operational choices. To ascertain the quantity and availability of electric vehicles (EVs), we tap into insights derived from the driving 
behaviors and geographical locations of EV owners. The battery management system offers crucial details on the initial and planned 
states of charge (SOC) of the EVs, which stand at 27% and 58%, respectively catering aptly to daily driving requirements. 

  The concept of the Pareto frontier emerges as a formidable tool in economics and decision-making realms. It 
delineates the optimal solutions set for a given predicament, where enhancing one solution inevitably leads to the 
degradation of another. This concept proves particularly invaluable in scenarios necessitating trade-offs between 
diverse objectives or criteria. Consider the scenario of electric vehicle charging stations. Here, the overarching goal 
might encompass reducing operational costs for both the building and the charging station while concurrently 
maximizing service quality and customer satisfaction. The Pareto frontier emerges as a guiding beacon, aiding in 
identifying the optimal blend of these facets, considering the available resources and constraints. Visualizing the Pareto 
frontier is adeptly achieved through a scatter plot graph. Each plotted point symbolizes a potential solution, with the 
axes denoting varying objectives or criteria. For instance, within the domain of electric vehicle charging stations, the 
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x-axis could epitomize the building operation cost, while the y-axis could mirror the charging station operation cost. 
The plotted points lay bare the diverse cost combinations across myriad scenarios or locales. The Pareto frontier, 
depicted by the green line linking select points, delineates the optimal solutions unalterable without augmenting one of 
the costs. Points beneath or left of the Pareto frontier are overshadowed by the frontier points, indicating escalated costs 
for both the building and the charging station. Conversely, points above or to the right of the frontier are deemed 
unattainable, indicative of their impracticability within the existing resource framework. 

  Decision-makers are steered by the Pareto frontier towards selecting the optimal solution for their quandary, 
contingent on their preferences and priorities. For instance, if the aim is to curtail the overall operational costs of both 
the building and the charging station, the decision-maker might opt for the point on the Pareto frontier showcasing the 
lowest sum of the x and y values. Should the goal be to strike a balance between the building and charging station 
costs, selecting the point with the minimal disparity between the x and y values on the frontier is prudent. In the realm 
of electric vehicle charging stations, particularly in rural locales with fluctuating electricity demand-supply dynamics, 
the Pareto frontier emerges as a potent tool for assessing cost-effectiveness. By leveraging the Pareto frontier, one can 
juxtapose diverse scenarios or locales, pinpointing the optimal equilibrium between the expenses and advantages of 
establishing and operating charging stations. The Pareto frontier additionally facilitates evaluating the repercussions of 
diverse policies or incentives on the cost-effectiveness of charging stations, encompassing subsidies, taxes, tariffs, or 
regulations. This renders the Pareto frontier an indispensable asset in decision-making and resource allocation, 
empowering stakeholders to make informed and strategic choices in complex and multifaceted environments. 

 

 
 
Figure 1. Pareto Frontier Analysis of Building and Charging Station Integration Operational Costs. 

 
  Applying Pareto optimal solutions to the Multi-Objective Optimization (MOO) problem yields truly remarkable 

outcomes. This approach is renowned for its straightforward implementation and exceptional efficacy, especially when 
tackling objectives with fewer quantities. The weighted sum approach emerges as a valuable instrument for delineating 
the priorities of both the building and the charging station within the broader energy system landscape. Notably, an 
incremental adjustment of 0.031 is employed for updating the weights, ensuring a nuanced calibration of priorities. 

  The graphical representation of the Pareto frontier in Figure 1 illustrates the dynamic pricing scheme's impact on 
the operating costs of the building and the charging station. Each point along this frontier, stemming from the non-
dominated energy dispatch method, encapsulates the intricate equilibrium between the building and the charging station 
as they vie for energy allotment. Within the realm of the Pareto frontier, distinct points convey nuanced scenarios. 
Point A ($53.99, $52.0688) signifies the scenario where the building secures the most cost-effective solution. In 
contrast, Point C ($89.75, $18.476) epitomizes the Pareto solution, indicating the charging station's optimal cost 
efficiency. Noteworthy is Point B ($86.87, $20.45), representing the nexus of minimum total cost a pivotal position 
that impeccably balances the operational expenses of the building and the charging station. This juncture encapsulates 
the optimal equilibrium sought between the two entities. 

  Figure 2 illustrates the Pareto Frontier Analysis from Buildings to Charging Stations Station Electricity 
Transmission under Operation Strategies A, B, and C. Strategy A is the most conservative one, as it does not transmit 
any electricity from the building to the charging station until the last 8 hours of the day. This means that the building 
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is saving electricity for its own use or for selling it to the grid at a higher price. However, this also means that the 
charging station is not getting any benefit from the building’s surplus electricity and may have to rely on other sources 
of power. Strategy B is the most aggressive one, as it transmits the maximum amount of electricity from the building 
to the charging station for the first 16 hours of the day. This means that the building is sacrificing its own electricity 
consumption or profit to support the charging station. This could be beneficial for the charging station if the demand 
for charging is high and the price of electricity is low. However, this also means that the building is risking running out 
of electricity or having to buy it from the grid at a higher price. Strategy C is the most balanced one, as it transmits a 
moderate amount of electricity from the building to the charging station throughout the day. This means that the 
building is adjusting its electricity transmission based on the demand and price of electricity. This could be optimal 
regarding the building and the charging station, as they can share the benefits and risks of the electricity market. 

 

 
 
Figure 2. Pareto Frontier Analysis of Electricity Transmission from Buildings to Charging Stations under Operation Strategies A, 
B, and C. 
 

  Figure 3 compares the three strategies in terms of electricity transmission from the charging station to the building. 
Strategy A: In this strategy, the building does not rely on charging stations for electricity supply throughout the entire 
24-hour period. This implies that the building has an alternative source of power and does not require electricity from 
the charging station during this time. There is no transmission of electricity from the charging station to the building. 
Strategy B: This strategy involves occasional transmission of a small amount of electricity from the charging station to 
the building. The amount of electricity transmitted ranges from 0.0177438 KW to 0.679161 KW. Although this amount 
is minimal, it indicates that the charging station can provide a minor contribution to the building's power supply in 
certain instances. However, it is not a significant or consistent source of electricity for the building. Strategy C: Like 
Strategy A, no electricity is transmitted from the charging station to the building in Strategy C. The building does not 
receive any power from the charging station in this scenario. Overall, Strategies A, B, and C do not involve substantial 
electricity transmission from the charging station to the building. These strategies primarily focus on the flow of 
electricity from the building to the charging station, suggesting that the building may be the primary source of power 
for the charging station. However, without additional context or information, it is difficult to draw definitive 
conclusions about the rationale behind these strategies or their effectiveness. 
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Figure 3. Pareto frontier analysis from Charging Stations station to Buildings electricity transmission for Operation Strategies A, 
B, and C. 

 
   

 
 
Figure 4. Comparing Operational Strategies: Collaborative and non-cooperative. 

 
  In Figure 4, a detailed cost analysis unveils insights into four distinct scenarios entwining the charging station and 
the building. In the non-cooperative scenario, the charging station accrues a daily cost of $23.87, juxtaposed with the 
building's expense of $84.9 per day. The cumulative cost in this scenario tallies up to $107.9 daily. Transitioning to the 
three strategic frameworks, Strategy A unfolds with a charging station cost of $52.0688 per day and a building cost of 
$53.99 daily. Consequently, the total cost for Strategy A stands at $106.0588 per day. Strategy B delineates a charging 
station expenditure of $20.45 per day, accompanied by a building cost of $89.75 per day, culminating in a total outlay 
of $110.2 daily. Strategy C, in contrast, manifests a charging station cost of $18.476 per day and a building cost of 
$86.87 daily, resulting in a total cost of $105.346 per day. 

  Upon scrutinizing the figure, a discernible pattern emerges. Strategy C emerges as the pinnacle of cost-effectiveness 
among the three strategies, offering the most economical solution at $105.346 per day. Strategy A clinches the runner-
up position with a marginally higher total cost of $106.0588 per day. Conversely, Strategy B grapples with the highest 
total cost among the strategies, peaking at $110.2 per day. While cost stands paramount in the decision-making process, 
it is imperative to acknowledge that additional facets such as efficiency, reliability, and the tailored requisites of both 
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the charging station and the building necessitate consideration. A comprehensive assessment, amalgamating these 
supplementary factors with cost considerations, is imperative to ascertain the most fitting strategy. 

 
5. CONCLUSION 

  This study demonstrates significant advancements in the integration of electric vehicle (EV) charging stations within 
buildings, contributing to sustainable energy management and greenhouse gas reduction. By employing Pareto frontier 
analysis and Multi-Objective Optimization (MOO) methods, the research successfully identifies Strategy C as the most 
balanced and cost-effective approach for vehicle-to-building energy integration, minimizing operational costs while 
ensuring system efficiency and reliability. The study provides a systematic framework for decision-makers to navigate 
the complexities of energy management, incorporating environmental, economic, and operational considerations, 
which enables informed decisions aligned with broader sustainability goals. Moreover, the findings emphasize the 
importance of prioritizing cost-effectiveness and system efficiency in the integration process, equipping stakeholders 
with actionable insights to optimize energy usage and enhance building functionality. The integration of EV charging 
stations not only supports the widespread adoption of electric vehicles but also aligns with global sustainability 
initiatives, advocating for innovative solutions that contribute to a cleaner environment. Finally, the methodologies and 
strategies proposed lay a robust foundation for further advancements in energy-efficient systems, opening avenues for 
exploring additional technological innovations, such as smart grid solutions and renewable energy integration. In 
summary, this research not only advances the understanding of integrating EV charging stations in buildings but also 
provides practical pathways for stakeholders to achieve net-zero energy objectives, highlighting the critical role that 
buildings can play in fostering a sustainable future and driving progress toward widespread EV adoption and improved 
energy management practices. Building on the findings of this study, several areas warrant further investigation to 
enhance the integration of EV charging stations into buildings. Future research should explore how different seasons, 
building types, and geographical locations affect energy consumption patterns and EV charging behaviors. 
Additionally, investigating the long-term performance and scalability of integrated EV charging infrastructure is 
essential, considering evolving technologies, market conditions, and regulatory environments. Advanced energy 
management systems, utilizing machine learning algorithms and predictive analytics, can further optimize interactions 
between building energy use, EV charging, and renewable energy sources. Furthermore, understanding user behavior 
and acceptance of EV charging infrastructure is key to successful implementation. Detailed analyses of the economic 
and environmental trade-offs involved, as well as the impact of various policies, incentives, and regulations, are crucial. 
Research should also explore the integration of EV charging stations with smart grids and IoT for enhanced grid 
stability and real-time data monitoring. Addressing these areas will build on the current study's findings and contribute 
to more effective, sustainable, and user-friendly EV charging infrastructure. 
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