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 The threats posed by cyber-attacks on energy networks, 
especially microgrids, have become a significant concern as the 
global energy landscape becomes more interconnected and 
reliant on technological advancements. This study investigates 
the fundamental vulnerabilities in energy networks and the 
potential impact of cyber-attacks on power generation, 
consumption, and backup systems. The importance of robust 
identification systems cannot be overstated; real-time 
identification, mitigation, and response to cyber-attacks rely on 
advanced detection technology. This research underscores the 
critical role of active security protocols in safeguarding energy 
networks from cyber-attacks, focusing on coding in MATLAB 
and the development of best practices. The paper explores two 
scenarios - normal operations and attack situations - for three 
key units: power generation, power consumption, and power 
storage. The methodology involves:  primary detection through 
statistical analysis and secondary detection through SPC. These 
findings emphasize the essential role of strong cybersecurity 
measures in ensuring the stability and dependability of 
microgrids, particularly in the face of escalating cyber threats. 
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1. INTRODUCTION 

The common improvements in cybersecurity, examined obstacles, vulnerabilities, and 
advantages, discussed a new descendant assault, and contrasted safety structures with first-generation 
techniques are well discussed in the literature [1]. Authors in [2] connected numerous study suggestions 
to a single theme by exploring the possible effects of CAs on electrical grid processes, such as condition 
estimates, autonomous power control, voltage management, and energy markets. While the 
paper assesses how false data injection can jeopardize stability, it may not deliver a detailed analysis of 
the cascading effects these attacks could have on the overall power grid. Li et al. [3], investigated a range 
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of CAs techniques, such as man-in-the-middle, denial-of-service, and fake data injection, on CPPS. There 
is a necessity to investigate successful approaches for preventing or addressing CAs in CPPS. Mitigation 
techniques might not be thoroughly evaluated for their effectiveness in real-time scenarios, where rapid 
response is crucial. 

Reference [4] offered a method for risk identification that considers protective systems when 
assessing the cybersecurity of PSs. The research could fail to account for the complexities of real-world 
systems, and the protection systems can be more complex in realistic circumstances (e.g., including 
transformer protection, ground protection, and circuit breaker malfunction protection). The consequence 
of CAs on the dependability of generators and transmission lines is examined by using a FOR framework 
that is generated utilizing loss of load probabilities curves from ten distinct attacks [5]. While the study 
proposed a FOR model that considers the impacts of CAs on generator and transmission line reliability, 
there is a lack of comprehensive understanding regarding how various types of CAs specifically affect 
different components of the PS. In addition to offering some fresh ideas for scholars in related subjects, 
[6] aims to present an overview of CAs in CPPS through the viewpoints of the description, categories, 
frequent situations, and possibilities. In [7],  the authors introduced a new malware identification method 
for electrical power distribution systems that effectively replicates complicated activities by using a real-
time baseline framework. The system used chi-square testing as a residual-based ongoing identification 
of attack approach to assess data gathered from measurement results to regulate orders. Future research 
could explore its effectiveness, accuracy, and performance in detecting attacks within larger networks 
with more nodes and varying configurations. 

Chen et al. [8] investigated load LFC for CAs and suggested a novel detection technique based 
on changeable properties. It's possible that the proposed changeable property-based detection method 
hasn't been thoroughly tested against a variety of attack scenarios outside the selected ones. The efficacy 
and dependability of the identification technique might not be known in the absence of careful evaluation. 
Zhou et al. [9] investigated the online detection of false data injection attacks and coordinated CPAs on 
PSs, proposing a cyber-physical FDIA with CCPA as a special case. While the article focused on FDIAs 
and CCPAs, there may be other types of CAs that also affect PSs but remain unaddressed. In [10], Bi and 
his colleagues utilized LFC methods shielded from dynamic CPAs through a unique detecting 
mechanism that uses the dynamic features of ACE to identify tainted content. The research gap could 
encompass more diverse and adaptive attack vectors that may evolve over time. Presekal et al. [11] 
suggested an innovative strategy for online CA scenario awareness. It employs a deep convolutional 
network and an integrated deep learning framework for real-time detection of anomalies. While the 
method demonstrated high accuracy in specific test cases, its ability to generalize across different power 
grid configurations, operational technologies, or geographical locations may not be established. Variations 
in network architecture and operational practices could affect the model's performance. Ref [12] offered 
a centralized process for CPA detection in ENs that leverages decentralized output injection and a sparse 
residual filter for distribution robustness without demonstrating uncertainty and limitations regarding 
interaction ability. Farrukh et al. [13] applied two-layer structured ML techniques with an accuracy rating 
of 95.44% for automated CA detection. Reference [14] provided a deep learning framework that uses both 
RNN and LSTM simultaneously to defend CPPSs against FCI assaults. The research gap could be 
addressed in future studies by redesigning the approach for MGs to focus on utilizing HIL laboratories. 
Wang et al. [15] described an online data-driven approach that employs semi-supervised clustering using 
K-means and local interaction among peers to recognize CAs in frequency management and PS balance. 
In a dynamic environment like PSs, generator behaviors can evolve, which may cause the model to 
become outdated. By employing an AC load flow-oriented simulation, [16] evaluated the smart grid 's 
resistance against FDI attacks and incorrect information recognition. It finds that CAs can cause 
overloading or large -scale breakdowns. The suggested model can be integrated with transient voltage 
stability and frequency stability to analyze the efficacy of the FDI paradigm. The purpose of [17] was to 
demonstrate a 98.19% accuracy rate in false data detection using FFN for replay CAs. Saber et al. [18] 
proposed an ABS that employs the isolation forest method to identify false-tripping assaults on LCDRs. 
In [19], Ntalampiras utilized a computationally intelligent approach that considers structural and temporal 
connections and combines linear time-invariant methods with NN. Reference [20] examined the difficulty 
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of designing and detecting centered secret CAs in shifting CPS, with an emphasis on the hidden strategies 
of hackers . On the other hand , reference [31] focused on how IoT integration improves the reliability 
and efficiency of smart grids, emphasizing important developments and practical applications. Zabihi et 
al. [32] analyzed the impact of integrating PHEVs and RESs on the power system, assessing load flow, 
short circuit scenarios, and economic implications to highlight the importance of smart grid adaptation. 
While RESs [35], such as hydropower [33] and PV [34] , can serve as power generation systems, there is 
a need for robust CA detection to protect the reliability and resilience of these RESs in interconnected 
microgrids [36]-[39]. 

According to the SOA, there are several techniques available for identifying CAs, including ML 
techniques, FNN, NN, AC load flow-oriented simulations, online data-driven approaches, RNN, LSTM, 
CNN, LFC, and FOR, etc, as discussed in the introduction along with the associated research gaps. This 
study concentrates on developing an enhanced framework capable of identifying CAs, which distinguishes 
it from previous research efforts. The key contributions of this research are as follows:  

 The impact of CA on the microgrid, including power generation, power consumption, and energy 
storage. 

 The provision of  a primary detection method based on mathematical principles. 

 The provision of  secondary detection method based on SPC. 

 The testing of  fluctuations and variations in three units, and the verification of the framework. 

This paper commences with an introductory section, followed by the presentation of the system 
model and mathematical equations in Section 2. Section 3 delves into the simulation results, while Section 
4 is dedicated to the discussion. The paper concludes by summarizing the main findings. 

 
2. MODELING FRAMEWORK  

 
Concentrated ENs , known as MGs , can operate either independently from the primary network 

or in conjunction with it. Preserving their ability to withstand CAs is essential for maintaining a continuous 
electricity supply . The system model and mathematical formulas employed to analyze the effects of a CA 
on a MG are presented. The MG system comprises power generation, power consumption, and power 
storage components. The normal operation of the MG is disrupted by a simulated CA at a designated time, 
affecting power generation and consumption. The simulation runs for 24 hours. Under normal 
circumstances , power generation, power consumption, and power storage are outlined in equations (1) 
and (2) based on [23] to describe the standard condition. Equation (3) is also derived from (1) and (2). 

                                                      𝑃௚௘௡ି௡௢௥௠௔ (𝑡) = 50 + 10 sin (
గ௧

ଵଶ
)                                       (1) 

                                                     𝑃௖௢௡௦ି௡௢௥௠௔௟(𝑡) = 45 + 5. sin (
గ௧

ଵଶ
+

గ

଺
)                                 (2) 

                     𝑃௦௧௢௥ି௡௢௥௠௔ (𝑡) = 𝑀𝑎𝑥 (𝑀𝑖𝑛൫𝑃௚௘௡ି௡௢௥௠௔௟(𝑡)ି 𝑃௖௢௡௦ି௡௢௥௠௔௟(𝑡), 10൯, 0)         (3) 

 
While in the simulation, the attack time is considered to be 12 hours, so: 

                                      𝑃௚௘௡ି௔௧௧௔௖௞(𝑡) = 𝑃௚௘௡ି௡௢௥௠௔௟(𝑡) ∗ 0.7                                 (4) 

                                     𝑃௖௢௡௦ି௔௧௧௔௖௞(𝑡) = 𝑃௖௢௡௦ି௡௢௥௠௔௟(𝑡) ∗ 1.2                               (5) 

𝑃௦௧௢௥ି௔௧௧௔௖௞(𝑡) = 𝑀𝑎𝑥 (𝑀𝑖𝑛൫𝑃௚௘௡ି௔௧௧௔௖௞(𝑡)ି 𝑃௖௢௡௦ି௔௧௧௔௖ (𝑡), 10൯, 0)             (6) 

 
In equations (4), (5), and (6), power generation, power consumption, and power storage within the attack 
situation are calculated. Figure 1 shows different units in MGs. 
 
2.1.  Primary Attack Detection 
 

Tracking variations in power generation and consumption from their typical operating patterns is 
part of the detection method. The variances are expressed as a percentage of the actual (under attack) 
against anticipated (normal) values. If these variances exceed specified limits, the attack is identified. 
Equations (7), (8), and (9) are used to calculate the deviation for each unit. 
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                      𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛௚௘௡௘௥௔௧௜௢௡(𝑡) =
(௉೒೐೙షೌ೟೟ೌ೎ೖ(௧)ష ௉೒೐೙ష೙೚ೝ೘ೌ೗(௧) )

௉೒೐೙ష೙೚ೝ೘ೌ೗  (௧)
                            (7) 

 

                      𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛௖௢௡௦௨௠௣௧௜௢௡(𝑡) =
(௉೎೚೙ೞషೌ೟೟ೌ೎ (௧)ష ௉೎೚೙ೞష೙೚ೝ೘ೌ (௧))

௉೎೚೙ೞష೙೚ೝ೘ೌ  (௧)
                        (8) 

 
𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛௚௘௡௘௥௔௧௜௢௡(𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௚௘௡௘௥௔௧௜௢௡   𝑜𝑟   𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛௖௢௡௦௨௠௣௧௜௢௡(𝑡) ≥

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௖௢௡௦௨௠௣௧௜௢௡                                                                                                         (9) 

  
The threshold is considered 0.25 in this case, through trial and error in this section. 

 
 
Fig. 1: MGs components. 
 
 
2.2.  Enhanced Methodology  
 

The primary approach models latent association patterns in information by using PCA, which 
is derived from multivariable SPC [24]. SPC is a technique that monitors , regulates, and enhances a 
process by examining its data to identify trends and ensure it stays within predetermined parameters for 
reliable results [25]. SPC involves the use of measurement technology to continuously monitor 
and improve production processes, guaranteeing high-quality products and meeting the increasingly 
high standards for quality across various industries, including services, education, and public 
administration. SPC can support efficient quality management and ongoing improvements [26]. 
Managing data quality, handling complex process variability, adapting to changing 
circumstances, integrating with modern equipment, addressing false alarms, and the time and cost 
involved in setup are some of the challenges associated with using SPC for control and monitoring 
purposes [27, 28]. The aim of [29] is to offer a novel approach to problem detection for industrial plants 
that is based on SPC and time series models. It takes into account both dynamic and non-linear system 
aspects to reduce costs and enhance efficiency, and it has been validated on standard platforms. 
Through the analysis of sensor data from 31 wind turbines, the integration of servicing assessments into 
data mining management, the achievement of high accuracy with predictive algorithms, and the 
demonstration of the potential to enhance operational efficiency and reduce downtime, reference [30] 
employed SPC and machine learning techniques to recognize wind turbine faults and predict service 
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requirements. CA on MGs has the potential to compromise the reliability and stability of power 
systems. This research describes an SPC-based mechanism for identifying such types of attacks. SPC 
is a quality control technique that can be adapted to monitor variations in power generation and 
consumption. At a specified attack time, it creates variations in power generation and consumption, 
resulting in a 30% reduction in generation and a 20% increase in consumption. The next stage 
is the calculation of the moving average and moving standard deviation of the combined power 
generation and consumption data, followed by establishing control limits (upper and lower) based on 
the moving average and standard deviation. The final stage involves identifying anomalies by 
checking whether the power generation or consumption data points fall outside the control limits. 
Equations (9) to (13) are applied for the enhanced methodology. Figure 2 presents the detection 
approach flowchart. ω is 10 during this part. In this study, the authors adopt the methodology based on 
the enhanced approach, which is referenced in [21, 22]. 

 

𝑀𝑜𝑣𝑖𝑛𝑔௔௩௘௥௔௚௘(𝑡) =
ଵ

ఠ
∑ 𝑑𝑎𝑡𝑎 (𝑖)

௧ାఠ/ଶ
௜ୀ௧ିఠ/ଶ                                  (10) 

 

 𝑀𝑜𝑣𝑖𝑛𝑔௦௧௔௡ௗ௔௥ௗିௗ௘௩௜௔௧௜௢௡(𝑡) = ට
ଵ

ఠ
 ∑ (𝑑𝑎𝑡𝑎 (𝑖) − (𝑀𝑜𝑣𝑖𝑛𝑔௔௩௘௥௔௚௘(𝑡))ଶ௧ାఠ/ଶ

௜ୀ௧ିఠ/ଶ         (11) 

 

ቊ
𝑢𝑝𝑝𝑒𝑟௟௜௠௜௧(𝑡) = 𝑀𝑜𝑣𝑖𝑛𝑔௔௩௘௥௔௚௘(𝑡) + 2 ∗ 𝑀𝑜𝑣𝑖𝑛𝑔௦௧௔௡ௗ௔௥ௗିௗ௘௩௜௔௧௜ (𝑡)

𝑙𝑜𝑤𝑒𝑟௟௜௠௜௧(𝑡) =  𝑀𝑜𝑣𝑖𝑛𝑔௔௩௘௥௔௚௘(𝑡) − 2 ∗ 𝑀𝑜𝑣𝑖𝑛𝑔௦௧௔௡ௗ௔௥ௗିௗ௘௩௜௔௧௜௢௡(𝑡)
ቋ                    (12) 

 
𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 (𝑡) =  𝑑𝑎𝑡𝑎 (𝑡) > 𝑢𝑝𝑝𝑒𝑟௟௜௠௜௧(𝑡)   𝑜𝑟 𝑑𝑎𝑡𝑎 (𝑡) < 𝑙𝑜𝑤𝑒𝑟௟௜௠௜௧(𝑡)                    (13) 
 
 

 
 
Fig. 2: Flowchart of detection methodology. 
 
2.3.  Simulate Real-Scenario  
 

To validate and simulate the real scenario, which involves unit fluctuations, this 
section applies a fluctuation component for each unit to capture this concept and observe the results of 
the enhanced detection methodology. To implement this scenario 𝜖௚௘௡, 𝜖௖௢௡௦ are added to each section 
to introduce random noise, simulating fluctuations to validate the methodology.  

How can SPC be utilized by technicians? To address this issue, real-time data 
from various locations, including distribution lines, transformers, and substations, can be monitored in 
a smart grid system using IoT-enabled devices. Engineers can identify potential cyber intrusions, such 
as attacks on the system's SCADA network, by employing control charts to monitor voltage, power 
flows, and data packet transfers. Abnormalities in predicted internet traffic or power 
flow indicate potential data manipulation. 
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3. RESULTS 

 
The results of the simulation are presented in this section under two scenarios: normal operation 

and an attack situation. Different cases are examined for three key units: power generation, power 
consumption, and power storage. The primary detection method relies on statistical analysis and 
variation to identify the attack time by flagging a transition from zero to one. The secondary detection 
method is based on SPC, which was described in the previous section. This method aims to detect the 
specific area and time of occurrence of anomalies by monitoring the three units of the MG. To validate 
the framework, fluctuations are introduced to each unit to assess the results and performance of the 
enhanced detection method. The following figures illustrate the simulation results. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Power generation, power consumption, and power storage under normal, and attack situation. 
 
According to Figure 3, under normal conditions, power generation peaks at around 50 kW 

between 5 and 10 hours and then gradually decreases to a minimum at around 15 hours before increasing 
again toward the end of the period. When under attack, power generation drops sharply after 10 hours, 
reducing to zero and remaining low until nearly the 20th hour before slightly recovering. Power 
consumption starts at around 40 kW, peaks at about 10 hours, and then decreases gradually until the 
15th hour before slightly rising again. During attacks, power consumption initially follows a similar 
pattern but diverges after 10 hours, showing an increase rather than a decrease, peaking around 15 hours 
and then continuing to rise steadily. The power storage level increases steadily, reaching a peak at 10 
hours and then decreasing steadily until it hits zero at around 15 hours, before starting to increase again. 
The storage level shows a similar initial increase but then drops sharply to zero at 10 hours and remains 
depleted throughout the observed period. 

Figure 4 illustrates all previous situations while adding the detection of a CA on the MG over 
a 24-hour period. The last plot, which shows attack detection, uses a binary flag (0 or 1) to indicate 
whether an attack is detected at any given time. The detection flag remains at 0 (indicating no attack) 
from the start of the observation period until approximately the 11th hour. Around the 11th hour, the 
detection flag sharply rises to 1, indicating the detection of a CA on the MG. This change is depicted 
with a magenta line. Once the detection flag reaches 1, it remains at this value for the rest of the 
observation period, suggesting that the attack persists, or the system remains in a detected state without 
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recovery. Figure 5 illustrates anomaly detection using SPC for the MG over a 24-hour 
period. Furthermore, the figure emphasizes the detection of anomalies in power levels, comparing 
normal operations to those under a CA. Both lines begin similarly, but they start to diverge after the 5-
hour mark. Under attack conditions, the power level drops significantly around the 10-hour mark and 
remains low for the rest of the period. The shaded region begins around the 10th hour, indicating 
the identification of anomalies in the power levels. This region persists until around the 18th hour, 
suggesting a prolonged period of identified anomalies. The blue shaded area emphasizes the 
effectiveness of SPC in detecting deviations from normal power levels, which are indicative of a CA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Power generation, power consumption, and power storage under normal, and attack situation 
including the primary attack detection. 
 

 

 
Fig. 5: Applying enhanced detection approach based on SPC. 

 
The continuous detection flag value of 1 beyond this point indicates a sustained recognition of 

the attack, emphasizing the importance of real-time monitoring and rapid response mechanisms in 
safeguarding the MG against such disruptions. To validate the enhanced approach for the detection of 
CA in MG, fluctuations for each unit were applied to observe whether the 
methodology was functioning properly. After applying the changes, the results showed that the 
methodology worked well under fluctuations for each unit. Around the tenth hour, 
the shaded area began to appear, signifying the discovery of anomalies in the power levels. Figure 6 
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presents the improved detection technique , employing SPC and introducing variations for each section 
to simulate a real-world scenario. 

 

 
 
Fig. 6: Applying enhanced detection approach based on SPC, while simulating real situation. 
 

 
4. DISCUSSION 

 
This study examines power generation, consumption, and storage under normal and attack 

scenarios. The results show that power generation drops drastically after 10 hours, indicating disruption 
caused by a CA. Consumption rises to a peak and then declines gradually, while storage levels drop 
sharply and remain low, impacting the system's ability to store power. The primary detection method 
uses statistical analysis and variation to identify the attack time, flagging the transition from a non-
attack state to an attack state around the 11th hour. The secondary method, based on SPC, monitors the 
specific area and time of anomalies by observing the three units of the MG. The enhanced detection 
method, which simulates real-world conditions, ensures robustness against normal variations and can 
identify genuine attacks. The simulation results emphasize the importance of robust cybersecurity 
measures in maintaining the stability and reliability of MGs, especially in the face of increasing cyber 
threats.  

This study has some limitations. Instead of setting the values of certain parameters, such as ω, 
manually, future work could focus on optimizing these parameters. The enhanced method also has some 
limitations, such as the inability to apply various types of CAs with different strengths. It might be more 
effective to employ ML techniques to observe and test this scenario. According to Figure 4, the final 
plot illustrates the results of the primary detection method, which successfully detects CAs in a timely 
manner.  Challenges associated with SPC implementation are illustrated in Figure 7.  

The research gap, according to the SOA, is provided in Table 1. Future work could focus on 
exploring to bridge gaps: 

 Implement ML techniques to enhance anomaly detection by learning from historical data and 
adapting to new threats. 

 Analyses the methodology under various types of CAs. 

 Investigate how different types of CAs specifically impact power quality. 
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Fig. 7: Challenges in the application of SPC. 

 
Table 1. The shortcomings in the SOA. 

 
Ref Research gap 

[1] The potential research gap refers to the impacts of CAs on the power grid. 
[2] It does not provide a detailed analysis of CAs. 
[3] Mitigation techniques may not have been thoroughly evaluated for their effectiveness in real-

time scenarios, where a rapid response is crucial. 
[4] The research may have overlooked the practical aspects of protection systems, such as 

transformer, ground, and circuit breaker malfunction protection, which are essential in real-
world systems. 

[5] There is a lack of detailed knowledge about how multiple types of CAs directly 
impact various PS components. 

[7] Further investigations might examine how well it performs, its accuracy, and 
how effectively it detects assaults in larger networks with additional nodes 
and diverse setups. 

[8] The proposed property-based identification system might not have been adequately 
evaluated across all prospective attack cases, not just the selected types. 

[9] Although CCPAs and FDIAs were the article's main topics, other CA types that might also 
impact PSs were not addressed. 

[10] The lack of research may include more varied and adaptable assault routes in the future. 
[11] Although the approach showed excellent accuracy in certain test instances, 

it remains unclear whether it can be applied to other power grid 
topologies, operational technologies, or regions. 

[12] A centralized method was provided for detecting CPA in ENs while avoiding ambiguity and 
limiting interaction by utilizing a sparse residual filter for distribution robustness and 
decentralized result injection. 

[13,14] Future studies may modify the strategy for MGs to focus on leveraging HIL 
laboratories, addressing the research deficit. 

[15] Generator characteristics can change in dynamic environments such as PSs, causing the 
framework to become outdated. 

[16] The effectiveness of the FDI paradigm can be examined by integrating the proposed model 
with transient voltage stability and frequency stability. 

[19] Introducing additional complexity makes finding the optimal configuration challenging and 
time-consuming. 
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5. CONCLUSION 
 

The simulation results are presented for two scenarios: normal operation and a situation 
involving an attack. Various scenarios are analyzed for three main components: power generation, 
power consumption, and power storage. Under normal circumstances, power generation exhibits a 
consistent pattern, peaking during midday and decreasing towards the evening. However, during an 
attack, power generation experiences a sharp decline after 10 hours, suggesting a disruption caused by 
the attack. Typically, power consumption increases to a peak and then gradually decreases. In the event 
of an attack, the consumption pattern deviates significantly after 10 hours, displaying an abnormal 
increase not observed during normal operations. The storage level during normal operation rises to a 
peak and then decreases steadily. Conversely, during an attack, storage levels plummet rapidly and 
remain low, indicating a substantial impact on the system's power storage capability. The primary 
detection method relies on statistical analysis and variation to identify the attack time. This method 
effectively flags the transition from a non-attack state (zero) to an attack state (one) around the 11th 
hour, indicating the onset of the CA. The secondary method, based on SPC, aims to detect the specific 
area and time of occurrence of anomalies by monitoring the three units of the MG. This method is 
visualized in the anomaly detection plot, where the gray shaded area indicates the detection of anomalies 
in power levels. To validate the framework, fluctuations were introduced to each unit to assess the 
results and performance of the enhanced detection method. This approach simulates real-world 
conditions, ensuring that the detection method is robust against normal variations and capable of 
identifying genuine attacks. The simulation results highlight the critical role of advanced detection 
methods in safeguarding MG operations. The primary detection method effectively identified the onset 
of CAs, while the enhanced SPC-based approach provided a detailed analysis of the anomalies, ensuring 
timely and accurate detection. These findings underscore the importance of robust cybersecurity 
measures in maintaining the stability and reliability of MGs, especially amid increasing cyber threats. 
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