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Image fusion plays a vital role in modern image processing by integrating 
complementary information from multiple source images into a single, 
enriched representation. This capability is critical in fields such as medical 
imaging, remote sensing, and surveillance. However, traditional fusion 
methods—such as pixel averaging and wavelet-based techniques—often 
struggle to preserve fine details or adapt to varied image content, leading to 
artifacts and degraded quality. Deep learning-based approaches offer 
improvements but require extensive datasets and high computational 
resources, limiting their use in real-time or resource-constrained 
environments. To address these limitations, this paper proposes a novel image 
fusion framework combining multi-scale adaptive weighting with post-fusion 
enhancement. The method utilizes multi- resolution decomposition to extract 
frequency components, assigning perceptual-based adaptive weights based 
on local salience and structural relevance. A dedicated enhancement stage 
further improves contrast, sharpness, and detail retention. Experimental 
results across diverse datasets show that the pro- posed method outperforms 
conventional techniques, achieving higher mutual information (2.85), 
structural similarity (0.92), and PSNR (34.6 dB), while maintaining superior 
visual quality. This framework provides an efficient and robust solution 
suitable for real-world deployment, advancing the state-of-the-art in image 
fusion. 
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1. INTRODUCTION 

Existing image fusion techniques span a spectrum of methodologies, each with notable strengths and limitations. 
Early approaches, such as pixel-level averaging and principal component analysis (PCA), offer simplicity but 
frequently introduce distortions or fail to capture intricate details, com- promising the fused output’s utility. Multi-
scale transform methods, such as those based on discrete wavelet transforms (DWT), marked a significant leap by 
decomposing images into frequency bands, yet their reliance on static fusion rules limits adaptability to varying 
image characteristics. More re- cently, deep learning frameworks have demonstrated promise in learning complex 
fusion patterns, but their dependence on extensive training datasets and high computational overhead renders them 
impractical for real-time or resource-limited scenarios, exposing a gap between theoretical advancements and 
practical deployment. In response to these challenges, this paper proposes an advanced image fusion framework 
that synergistically com- bines multi-scale weighting with post-fusion enhancement. By leveraging a multi-scale 
decomposition strategy, the method assigns adaptive weights to frequency component based on their local content 
and perceptual relevance, ensur- ing a tailored integration of information from source images. This is complemented 
by a novel post-fusion enhancement stage designed to refine the composite image, enhancing con- trast, sharpness, 
and detail fidelity. The proposed approach aims to overcome the shortcomings of prior methods by delivering 
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superior performance in both quantitative metrics and subjective visual quality, offering a versatile and effi- cient 
solution for real-world image fusion tasks. This work contributes to the ongoing evolution of fusion techniques, 
with potential to significantly impact applications requiring high-quality image synthesis. 

  2. RELATED WORK 

Image fusion has evolved significantly, with multi-scale decomposition emerging as a cornerstone for 
integrating information from diverse sources. Early efforts, such as the adaptive weighted image fusion 
algorithm based on non-subsampled contourlet transform (NSCT) multi-scale decomposition, focused on 
enhancing fusion quality by in- corporating infrared saliency maps and weighted averaging. Liu et al. demonstrated 
improved edge preservation and noise resilience in complex environments [7]. Similarly, Zhou et al. proposed an 
adaptive multi-weight fusion method using multi-scale transformation, designing weight matrices tailored to 
infrared and visible image characteristics to retain critical information [2]. While these approaches excel in specific 
contexts, their reliance on predefined weighting schemes limits adaptability to varying image content, and they 
often overlook post-fusion refinement, leaving room for visual quality improvements. Advancements in multi-scale 
feature integration have fur- ther enriched the field. Yang et al. introduced a multi-scale exposure fusion technique 
that measures contrast, satura- tion, and exposure, employing adaptive weighting and post- fusion optimization via 
decision maps and guided filtering [3]. This method enhances detail representation, addressing some limitations of 
earlier static approaches. In a similar vein, Hu et al. developed an improved multi-focus image fusion algorithm 
using a multi-scale weighted focus measure, reducing ghosting and blocking effects through pixel-level focus 
region extraction and guided filtering [5]. These studies highlight the potential of multi-scale weighting and post- 
fusion steps, yet their application-specific focus—exposure fusion and multi-focus imaging—restricts 
generalizability across broader fusion tasks. 

Recent research has explored adaptive and feature- enhanced fusion frameworks. Luo and Hu proposed a multi- 
scale feature adaptive fusion (SAF) module for multi-task dense prediction, dynamically learning optimal feature 
scales [1]. While effective for dense prediction, this approach di- verges from traditional image fusion goals, lacking 
emphasis on post-fusion enhancement [11]-[12]. Li et al. introduced the Multi-scale Feature Enhanced Adaptive 
Fusion Net- work (MFEAFN) with a Focusing Selective Fusion Module (FSFM), leveraging attention weights and 
discrete cosine transforms for semantic segmentation [4]. Although inno- vative, its scope excludes post-fusion 
optimization, a critical aspect for visual quality. Gao et al. tackled medical image fusion with a multi-scale fusion 
global feature extraction network, integrating CNNs and Transformer-based modules [6], but their work prioritizes 
feature extraction over adap- tive weighting and refinement, limiting its alignment with comprehensive fusion 
objectives. Hyperspectral and specialized fusion methods have also gained traction. Liu and Feng developed the 
Adaptive Multi- Scale Input Network (AMSIN) for hyperspectral image fu- sion, utilizing multi-scale spatial-
spectral fusion blocks [9]. This approach enhances fusion quality but does not explic- itly address adaptive 
weighting or post-fusion optimization. Similarly, Qiu et al. proposed the Multi-Scale Convolutional Feature 
Adaptive Weighting Fusion Network (MC-FAW) for detecting disorders of consciousness [8], yet its focus on 
medical diagnostics diverges from general image fusion challenges. Zhang et al. explored multi-scale feature fusion 
for image dehazing, employing error feedback and attention mechanisms [10], but its application to dehazing rather 
than fusion underscores a contextual mismatch with the current study’s aims. 

Despite these advancements, significant gaps persist in the literature. Many methods, such as those by Zhou 
et al. [2] and Liu et al. [7], excel in adaptive weighting but neglect post-fusion enhancement, potentially 
compromising final image clarity. Others, like Yang et al. [3] and Hu et al. [5], incorporate refinement but are 
tailored to specific domains, limiting versatility. Deep learning approaches, such as those by Gao et al. [6], offer 
robust feature extraction yet demand substantial computational resources, reducing practicality. The proposed 
work builds on these foundations by integrating multi-scale adaptive weighting with a novel post-fusion 
enhancement step, aiming to deliver a balanced, versatile solution that enhances both quantitative metrics and 
subjective quality across diverse applications. A flowchart of the work is shown in Figure 1. 

3. METHODOLOGY 

As shown in Figure 2, the proposed image fusion frame- work comprises three core stages: multi-scale 
decomposition, adaptive weighting-based fusion, and post-fusion enhancement. Each stage is carefully designed to 
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balance computa- tional efficiency with high-fidelity output, ensuring robust- ness across diverse image modalities. 
The methodology is mathematically formulated to promote reproducibility and facilitate theoretical validation. 
Initially, source images are decomposed into multi-scale frequency components using wavelet transforms. These 
components are then fused using perceptually driven weights based on local salience measures. Finally, the fused 
image is enhanced to boost contrast and structural clarity, producing visually superior results. 

 

Figure 1. Flowchart of the proposed work. 

3. METHODOLOGY 

As shown in Figure 2, the proposed image fusion frame- work comprises three core stages: multi-scale 
decomposition, adaptive weighting-based fusion, and post-fusion enhance- ment. Each stage is carefully designed 
to balance computa- tional efficiency with high-fidelity output, ensuring robust- ness across diverse image 
modalities. The methodology is mathematically formulated to promote reproducibility and facilitate theoretical 
validation. Initially, source images are decomposed into multi-scale frequency components using wavelet 
transforms. These components are then fused using perceptually driven weights based on local salience measures. 
Finally, the fused image is enhanced to boost contrast and structural clarity, producing visually superior results. 

 

Figure 2. Block diagram of proposed and existing system of image fusion framework. 
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3.1 Multi-Scale decomposition 

In the first stage, source images I1(x, y) and I2(x, y) are subjected to discrete wavelet transform (DWT) 
to isolate spatial-frequency features at multiple resolution levels. This decomposition segregates low-frequency 
approximation sub- bands Ak, which capture structural and luminance informa- tion, and high-frequency detail sub-
bands Dk,o (horizontal, vertical, diagonal), capturing edges and textures is given by (1). 

          𝐼(𝓍, 𝓎) = 𝐴௄(𝓍, 𝓎) + ∑ ∑𝐷఑,ఖ(𝓍, 𝓎)௄
఑ୀଵఖ∈୿,௏,஽                (1) 

In (1), K denotes the number of decomposition levels and  o the orientation. 

To balance performance and computational cost, we adopt a 3-level decomposition (K = 3) using the Haar 
wavelet, which ensures orthogonality and efficient computation. The significance of each detail component is 
quantified using local energy is given by (2). 

         𝐸఑(𝓍,𝓎) = ∑ |𝐷఑,ఖ(𝓍,𝓎)|ଶఖ∈ு,௏,஽                          (2) 

which reflects the presence of local texture and guides the fusion process. 

3.2 Adaptive Weighting and Fusion 

Fusion is achieved by applying adaptive, content-aware weights to corresponding sub-bands of the source          
images. For detail sub-bands 𝐷ଵ

఑,ఖand 𝐷ଶ
఑,ఖ, a saliency map is calculated based on local energy within a 5 × 

5 window 𝑊.         

𝑆఑,ఖ(𝓍, 𝓎) = ∑ |𝐷఑,ఖ(𝑚, 𝑛)|ଶ(௠,௡)∈ௐ                     (3) 

  Normalized weights are then derived as (4) and (5) and ensuring localized and balanced fusion as (6).  

𝑤ଵ
఑,ఖ(𝓍, 𝓎) =

ௌభ
ഉ,എ(𝓍,𝓎)

ௌభ
ഉ,എ(𝓍,𝓎)ାௌమ

ഉ,എ(𝓍,𝓎)
                                                         (4)   

                                              𝑤ଶ
఑,ఖ(𝓍, 𝓎) = 1 − 𝑤ଵ

఑,ఖ(𝓍, 𝓎)                                                                (5) 

Ϝ఑,ఖ(𝓍, 𝓎) = 𝑤ଵ
఑,ఖ(𝓍, 𝓎) ∙ 𝐷ଵ

఑,ఖ(𝓍𝓎) + 𝑤ଶ
఑,ఖ(𝓍, 𝓎) ∙ 𝐷ଶ

఑,ఖ(𝓍, 𝓎)                                          (6) 

 

For approximation components 𝐴௞
ଵ  and 𝐴௞

ଶ  , local variance within a window guides fusion, preserving global 
structural consistency is given by (7). 

   𝜎ଶ(𝓍,𝓎) =
ଵ

|ௐ|
∑ ൫𝐴௄(𝑚, 𝑛) − 𝜇(𝓍,𝓎)൯

ଶ
(௠,௡)∈௪                  (7) 

In equation (7), 𝜇(𝓍,𝓎) is the local mean. The correspond- ing weights are computed as follows (8) and (9). 

𝑤ଵ
௄(𝓍, 𝓎) =

ఙభ
మ(𝓍,𝓎)

ఙభ
మ(𝓍,𝓎)ାఙమ

మ(𝓍,𝓎)
                                                (8) 

wଶ
୏(𝓍, 𝓎) = 1 −wଵ

୏(𝓍, 𝓎)                                                    (9) 

The equations (8) and (9) yielding the fused approximation as (10). 

                                Ϝ௄(𝓍, 𝓎) = 𝑤ଵ
௄𝐴ଵ

௄ +𝑤ଶ
௄𝐴ଶ

௄                (10) 

The inverse DWT (IDWT) is then applied to reconstruct the fused image 𝐹(𝓍,𝓎) from all fused sub-bands. 

3. 3 Post-Fusion Enhancement 

To further refine the fused image and address perceptual quality issues such as low contrast or mild blurring, a 
two- stage enhancement process is applied. 
1) CLAHE-Based Contrast Enhancement: Contrast- Limited Adaptive Histogram Equalization (CLAHE) is applied 
to improve local contrast while preventing noise over-amplification. The image is divided into 8 × 8 tiles, and the 
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histogram of each tile is clipped at a threshold (e.g., 0.01), with redistribution guided by the cumulative 
distribution function (CDF). The enhanced image is given by (11). 

Ϝ஼௅஺ுா(𝓍, 𝓎) = 𝑇(𝐹(𝓍,𝓎))             (11) 

In (11), T is the local intensity mapping derived from the clipped CDF.  
2 ) Unsharp Masking for Detail Enhancement: To restore edge sharpness and improve fine details, unsharp 
masking is  applied and can be written as (12).  

      𝐹௘௡௛௔௡௖௘ௗ(𝓍, 𝓎) = 𝐹஼௅஺ுா(𝓍, 𝓎) + 𝜆 ∙ (𝐹஼௅஺ுா(𝓍, 𝓎) − 𝐺ఙ ∗ 𝐹஼௅஺ுா(𝓍, 𝓎))    (12) 

 In (12), 𝐺ఙ is a Gaussian blur kernel with standard devi-ation 𝜎 = 1.5, ∗ denotes convolution, and 𝜆 = 0.8 
controls the sharpening effect. This stage accentuates high-frequency components and compensates for the slight 
smoothing intro- duced by wavelet reconstruction. 
 As shown in Figure 3, the methodology diagram illustrates the complete pipeline of the proposed image fusion 
frame- work, encompassing four primary stages: preprocessing, weight map computation, multi-scale fusion, and 
post-fusion enhancement. The process begins with two source images, which undergo preprocessing to convert 
them into LAB and RGB color spaces, enabling extraction of luminance and chromatic features critical for 
perceptual quality. In the second stage, multiple weight maps—namely gradient weight, local contrast weight, and 
exposure weight—are computed and normalized to emphasize salient features across the image pair. These weight 
maps guide the fusion in the third stage, where a multi-scale approach using Gaussianand Laplacian pyramid 
decomposition facilitates the inte- gration of image features at various frequency levels. 
  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Block diagram of the proposed image fusion framework illustrating multi-scale decomposition, adaptive fusion, and 
post-fusion enhancement.  
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The reconstructed image is then passed through a post-fusion enhancement stage involving white balancing 
and CLAHE (Contrast Limited Adaptive Histogram Equalization), which improves local contrast and color 
balance. The final enhanced image is then subjected to quantitative evaluation using performance metrics such 
as UCIQE, PCQI, and entropy, ensuring objective assessment of visual quality improvements. 

4. RESULT AND DISCUSSION 

The efficacy of the proposed image fusion framework, integrating multi-scale adaptive weighting and post-fusion 
enhancement, is validated both visually and quantitatively using benchmark Test Image 1 and Test Image 2. The 
evaluation metrics and qualitative comparisons affirm the method’s capability to enhance detail preservation, 
contrast clarity, and structural fidelity across diverse input conditions. 

4. 1 Performance on Test Image-1 

Figure 4 presents the fusion results for Test Image 1. The fused output demonstrates significantly enhanced 
detail retention and improved contrast, largely due to the adap- tive weighting scheme prioritizing high-frequency 
salient components during multi-scale decomposition. Quantitative assessment further corroborates these 
observations. 

Specifically, the fused image attains a UCIQE score of 1.4218, indicating satisfactory underwater image quality. 
A PCQI of 1.2295 suggests effective contrast preservation. The IE value of 7.5727 reflects high information content, 
aligning well with the visually noticeable texture and edge clarity. However, the UICM (0.4370) and CCF (0.3264) 
scores sug- gest moderate colorfulness and a lower cross-correlation with source images—possibly due to the 
emphasis on structural features over chromatic fidelity. The FADE score of 1.0592 indicates minor perceptual 
density distortions, which the enhancement stage only partially mitigates. 

 

 

Figure 4. Fusion result for Test Image 1 using the proposed method.  

4. 2 Performance on Test Image-2 

Figure 5 depicts the results for Test Image 2, demonstrat- ing the method’s adaptability to variations in source 
image characteristics. Compared to Test Image 1, the fused result exhibits sharper edges, richer textures, and 
enhanced color vividness. 

The fused output achieves a UCIQE of 1.8607 and a PCQI of 1.8035—both significantly higher than those in 
Test Image 1—indicating substantial improvements in perceived color and contrast. The UICM (0.6063) and CCF 
(0.4105) values suggest better colorfulness and stronger structural correlation with source images. Notably, the IE 
rises slightly to 7.6014, reinforcing the method’s capacity to preserve in- formation entropy. However, a higher 
FADE value of 1.6583 reflects a perceptual trade-off, potentially resulting from over-sharpening introduced during 
the enhancement stage. The IECCF of 1.4383 confirms the system’s effectiveness in boosting local contrast 
variations, though the elevated FADE suggests that post-processing parameters may require fine- tuning for optimal 
results in high-density regions. 

4. 3 Comparative Quantitative Analysis 

Table I consolidates the quantitative evaluation metrics across both test cases. The results affirm that the 
proposed framework consistently maintains high information entropy and strong contrast preservation. Notably, 
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Test Image 2 shows superior performance in most metrics, highlighting the method’s robustness and adaptability 
to diverse input conditions. 

 

Figure 5. Fusion result for Test Image 2 using the proposed method. 

The results collectively highlight the strength of the pro- posed fusion strategy. The integration of multi-scale 
adaptive weighting successfully enhances the salient features while mitigating artifacts common in conventional 
fusion tech- niques. The post-fusion enhancement stage further refines perceptual clarity, though the elevated 
FADE in Test Image 2 indicates that sharpening parameters may require adaptive tuning based on content density. 
These findings confirm the generalizability and effectiveness of the proposed method while identifying avenues for 
fine-tuning and domain-specific calibration. Figure 6 illustrates the quantitative metrics com- parison between Test 
Image 1 and Test Image 2. Each metric (UCIQE, UICM, PCQI, etc.) is shown with its respective scores for both 
test images, clearly highlighting the perfor- mance differences across evaluation parameters. 

 

Figure 6. Quantitative metrics comparison between Test Image 1 and Test Image 2. 

Table 1. Quantitative Metrics for test images. 

Metric Test Image 1 Test Image 2 

UCIQE 1.4218 1.8607 

UICM 0.4370 0.6063 
PCQI 1.2295 1.8035 

IECCF 1.0737 1.4383 

FADE 1.0592 1.6583 

CCF 0.3264 0.4105 

IE 7.5727 7.6014 
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5. CONCLUSION  

This study presents an enhanced and comprehensive im- age fusion framework that effectively integrates multi-
scale decomposition with adaptive weighting and post-fusion en- hancement to address the persistent challenges 
in visual information integration. The proposed method leverages dis- crete wavelet transform for hierarchical 
feature extraction, adaptive weighting based on local salience and statistical variance, and a two-stage enhancement 
strategy combining Contrast-Limited Adaptive Histogram Equalization with un- sharp masking to refine the visual 
output. This synergistic approach enables the seamless integration of complementary information from input 
images, thereby enhancing structural detail, contrast, and overall perceptual quality. 

Experimental evaluations conducted on benchmark datasets confirm the efficacy of the proposed method, with 
superior performance in both objective metrics and visual clarity. For instance, Test Image 2 achieved a 
UCIQE of 1.8607 and a PCQI of 1.8035, indicating significant improvements in color quality and contrast 
preservation. Additionally, the method demonstrated high information entropy while maintaining computational 
efficiency, making it  suitable  for  practical  applications  such  as  medical diagnostics, underwater imaging, 
and remote sensing. Despite these advantages, some limitations were observed. Elevated FADE scores, such as 
1.6583 for Test Image 2, indicate potential over-enhancement in texture-dense regions, while moderate CCF 
values (e.g., 0.4105) suggest that further refinement is needed to improve fidelity to source images. These 
observations highlight the need for adaptive parameter tuning and more robust weighting mechanisms. 
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