
Journal of Computing and Data Technology 
Vol. 01, No. 01, June 2025, pp. 40-49. 

DOI: https://doi.org/10.71426/jcdt.v1.i1.pp40-49 
 

Homepage: https://review.journal-of-modern-technology.com/index.php/jcdt/index 
 

 

 

40 
 

Deep Learning for Skin Disease Classification: A Comparative Study of 
CNN and CNN-LSTM Architectures  

Fatmir Basholli1, Mohammed R. Hayal2, Ebrahim E. Elsayed3*, Davron Aslonqulovich Juraev4,5 

1Department of Engineering, European University of Tirana, Tiranë, Albania, Email: fatmir.basholli@uet.edu.al , 
universaloffice151@gmail.com , ORCID: https://orcid.org/0000-0002-3621-4153  

2Department of Electronics and Communications Engineering, Faculty of Engineering, Mansoura University, Mansoura 
35516, Egypt, Email: mohammedraisan@gmail.com , mohammedraisan@std.mans.edu.eg , ORCID: https://orcid.org/0000-

0002-7997-702X  
3*Department of Electronics and Communications Engineering, Faculty of Engineering, Mansoura University, Mansoura 

35516, Egypt, Email: engebrahem16@gmail.com , engebrahem16@std.mans.edu.eg , ORCID: https://orcid.org/0000-0002-
7208-2194 

4Scientific Research Center, Baku Engineering University, Baku AZ0102, Azerbaijan. Email: juraevdavron12@gmail.com  
5Department of Scientific Research, Innovation and Training of Scientific and Pedagogical Staff, University of Economics and 

Pedagogy, Karshi 180100, Uzbekistan, Email: juraev_davron@ipu-edu.uz , juraevdavron12@gmail.com , ORCID: 
https://orcid.org/0000-0003-1224-6764     

Article Info  ABSTRACT 

Article history: 

Received: May 20, 2025 
Revised: June 23, 2025 
Accepted: June 27, 2025 
First Online: Juen 30, 2025 

 
Skin diseases, particularly melanoma and other types of pigmented lesions, 
constitute a significant portion of global health concerns due to their 
prevalence and potential severity. In recent years, deep learning (DL) has 
revolutionized image classification tasks in the medical domain, particularly 
using Convolutional Neural Networks (CNNs) for skin lesion analysis. 
However, traditional CNNs are limited to capturing spatial features, often 
overlooking sequential patterns and complex contextual cues inherent in 
dermatological imagery. This study explores the automated classification of 
pigmented skin lesions using the HAM10000 dataset, a diverse collection of 
10,015 dermatoscopic images spanning seven diagnostic categories. 
Addressing challenges in computational dermatology, we leverage 
MobileNet-V2 and InceptionV3 deep learning architectures, optimized via 
transfer learning and advanced preprocessing techniques. Comparative 
evaluation is performed between baseline CNN models and their Long Short-
Term Memory (LSTM)-augmented variants to assess improvements in 
classification performance through sequential feature modeling. Results 
indicate that LSTM integration enhances contextual feature learning, 
improving accuracy for underrepresented lesion classes, with 
InceptionV3+LSTM achieving the highest classification accuracy. 
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1. INTRODUCTION 

Over the last few years, convolutional neural networks have been widely used for skin disease classification with 
notable success. Architectures such as Visual Geometry Group (VGG), ResNet, and DenseNet have enabled 
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automated detection of complex features in skin lesions, including color variations, texture irregularities, and 
asymmetries. Transfer learning, particularly the fine-tuning of CNNs pre-trained on ImageNet, has been instrumental 
in improving performance with limited labeled medical data. These models autonomously learn hierarchical feature 
representations, reducing dependence on manual feature engineering and enhancing diagnostic efficiency. As a 
result, CNNs have become pivotal in computer-aided dermatological diagnosis, supporting clinicians with timely 
and accurate assessments [1]-[12]. 

Several studies have leveraged CNNs for dermatological image classification. The use of CNNs for skin cancer 
detection, achieving dermatologist-level performance using InceptionV3. An ensemble CNNs for robust 
classification of pigmented skin lesions. Recent advancements introduced hybrid models combining CNNs with 
RNNs or attention mechanisms to capture both local texture and global contextual features [3]-[6]. 

However, most literature still lacks comparative insights into foundational CNN models against their hybrid 
extensions, especially in dermatology. Our work fills this gap by systematically evaluating CNN-only models and 
CNN+LSTM combinations, analyzing their strengths, weaknesses, and suitability for multi-class lesion classification 
on large-scale dermatoscopic datasets [29]-[32]. 

The subsequent sections of the paper are given as: the literature works are studied in section 2, the proposed 
methodology framework and datasets are explained in section 3, and the results and are presented in section 4. 
Finally, section 5 concludes the work and future scope of the work. 

2. LITERATURE SURVEY 

Saifan and Jubair [11] applied a deep CNN to classify six skin conditions, achieving 81.75% accuracy. Mohsin 
Ali et al. [19] developed a custom CNN yielding over 96.64% accuracy on a 57-class dataset, outperforming pre-
trained models. Velasco et al. [23] emphasized the variability in CNN performances and noted a surprisingly low 
44.1% accuracy for VGG16, indicating a need for better model selection. ResNet continues to be a benchmark for 
performance. Filali et al. [10] and Goindi et al. [14] showed its superior accuracy and low false-positive rate, 
especially when paired with ensemble techniques like Residual-XGBoost, which achieved 99.12% accuracy. 
DenseNet201, as shown by Rezvantalab et al. [17], surpassed dermatologist-level performance in dermoscopy 
classification, demonstrating deep learning's clinical potential. 

EfficientNet and MobileNet variants are notable for mobile deployment. Yeşim Şahin et al. [12] identified 
MobileNet-V3-Large as the most effective among six DL models with 89.41% accuracy. Srinivasu et al. [27] 
proposed a hybrid MobileNetV2-LSTM model, integrating sequential learning with visual features, and deployed it 
via a mobile application for real-time diagnosis. Chandna et al. [5] utilized a two-path model combining EfficientNet 
and MobileNetV2, achieving 70% accuracy. These findings support the growing viability of low-power deep 
learning solutions for resource-constrained environments. 

Hybridization of DL models with traditional ML methods enhances performance. Chandra et al. [5] proposed a 
hybrid model integrating Xception, EfficientNet, and GCNs, outperforming ResNet50. Nińo-Rondón et al. [14] 
compared deep learning with optimized ML models like XGBoost and Random Forest, where the custom CNN 
yielded higher precision and recall. Abhinav Shukla [29] designed a machine learning-based ensemble model 
achieving 97.33% accuracy, reinforcing ensemble methods' value in capturing diverse feature representations. 

While DL dominates, traditional ML remains relevant. Osim Kumar Pal [13] demonstrated that KNN and RF 
algorithms achieved 95.23% and 94.22% accuracy, respectively. Goindi et al. [18] evaluated ML (SVM, MLP, RF) 
versus DL (CNN, LSTM-RNN), showing superior performance of the latter on image data. Nalamwar and 
Neduncheliyan [26] emphasized intelligent ML-based systems for low-cost skin lesion classification, making a case 
for integrating such models in early screening protocols. 

Transfer learning remains a key technique in cases with limited data. Karthikeyan and Anuradha [4] successfully 
applied it to clinical face skin images. Velasco et al. [23] found significant performance differences among pre-
trained models, underscoring the importance of choosing suitable base networks. Jessica Velasco noted 
misclassification issues with standard CNNs and called for expanded disease type coverage. 

Quantum machine learning presents a novel approach. Sofana Reka et al. [16] implemented a Quanvolutional 
Neural Network combining RY qubit rotation and Pauli-Z gates, achieving 82.86% accuracy. While experimental, it 
showcases future directions in quantum-enhanced diagnostics. Hamida et al. [28] proposed a multimodal deep 
learning framework integrating diverse data sources, outperforming unimodal systems and suggesting further 
exploration of clinical metadata and genetic features. 
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ezvantalab et al. [17] and Wang et al. [24] compared AI models with dermatologists. DenseNet201 exceeded 
dermatologists' performance in classification AUC. Wang et al. showed a CNN performing comparably to 164 
dermatologists for cutaneous tumor diagnosis. These studies support DL integration in clinical workflows. 

Kuan et al. [22] analyzed burn depth classification, highlighting the extension of DL to niche dermatological 
domains. Sönmez et al. [25] further showed how dermoscopic DL models improve skin lesion diagnosis beyond 
melanomas. Sagar et al. [20] emphasized ML's potential to reduce diagnostic costs and enhance accessibility in 
under-resourced areas. Pradeepa and Punitha [21] stressed DL’s superiority over ML in interpretability and speed. 
However, Velasco et al. [23] and Hamida et al. [28] raised concerns about misclassification, data limitations, and the 
need for real-world validation. A summary of the key performances is given in Table 1. 

Table 1. Key performances on skin disease classification.  

Study Model(s) Accuracy / Best Metric Dataset / Notes 

[10] Youssef et al. ResNet Highest Acc & lowest FPR Melanoma binary 

[11] Saifan and Jubair Deep CNN 81.75% 6-class, online-sourced 

[12] Şahin et al. MobileNet-V3-Large 89.41% ISIC Dataset 

[13] Pal KNN / RF 95.23% / 94.22% ML baseline models 

[14] Niño-Rondón et al. CNN vs XGBoost CNN better in all metrics Custom CNN 

[15] Goindi et al. Residual-XGBoost 99.12% LSTM-RNN had best recall 

[16] Sofana Reka et al. QuanvNet 82.86% Quantum + CNN 

[17] Rezvantalab et al. DenseNet201 Highest AUC Outperformed dermatologists 

[18] Goindi et al. CNN, LSTM, SVM Varying Acc & AUC Emphasis on model suitability 

[19] Mohsin Ali et al. Custom CNN 96.64% 57 skin disease classes 

3. METHODOLOGY 

The HAM10000 dataset comprises 10,015 dermatoscopic RGB images across seven skin disease categories: 
Melanoma (MEL), Melanocytic Nevi (NV), Basal Cell Carcinoma (BCC), Actinic Keratoses (AKIEC), Benign 
Keratosis-like Lesions (BKL), Dermatofibroma (DF), and Vascular Lesions (VASC); shown in Figure 1. The dataset 
is imbalanced, with NV constituting the majority class. Images were resized to 128×128 pixels and normalized to 
[0,1] for input consistency. 
A) Dataset overview 

The HAM10000 (Human Against Machine with 10,000 training images) dataset was utilized for this study. It is 
a comprehensive dermatoscopic image collection that captures 10,015 high-resolution images of pigmented lesions 
across seven diagnostic classes, making it a suitable benchmark for machine learning-based dermatological analysis. 
Each image is labeled with one of the following seven categories as given in Table 1. A pictorial representation of 
the skin disease classification is shown in Figure 2.   

Table 1. Categories of skin diseases. 

Diagnostic Category Abbreviation Description 

Melanoma MEL Malignant skin cancer with high fatality 

Melanocytic Nevi NV Benign melanocytic tumors 

Basal Cell Carcinoma BCC Common form of skin cancer 

Actinic Keratoses and Intraepithelial Carcinoma AKIEC Pre-malignant and malignant epidermal tumors 

Benign Keratosis-like Lesions BKL Benign epidermal growths 

Dermatofibroma DF Benign fibrous skin tumors 

Vascular Lesions VASC Hemangiomas, angiomas, and other vascular types 
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Figure 1. Sample images of skin diseases. 

 B) Class Distribution 
The class distribution in the dataset is highly imbalanced, with the Melanocytic Nevi (NV) class making up 

approximately 67% of the total data. In contrast, categories such as Dermatofibroma (DF) and Vascular Lesions 
(VASC) are significantly underrepresented. The approximate distribution is shown in Table 2. 

Table 2.  Distribution of considered data. 

Class Image Count Percentage 

NV ~6700 66.9% 

MEL ~1100 11.0% 

BKL ~1100 11.0% 

BCC ~500 5.0% 

AKIEC ~300 3.0% 

VASC ~140 1.4% 

DF ~110 1.1% 

3. 1 CNN and LSTM-based architectures for skin lesion classification 

In this study, we present a comparative analysis of two state-of-the-art CNN architectures—MobileNetV2 and 
InceptionV3—for the task of automated skin disease classification using the HAM10000 dermatoscopic image 
dataset. Both models were implemented in two configurations: (i) a baseline CNN model pre-trained on the ImageNet 
dataset and fine-tuned on HAM10000, and (ii) an augmented version where the CNN backbone was coupled with 
LSTM layer to capture spatial dependencies across feature maps. 

This dual-path approach was motivated by the hypothesis that while CNNs excel in extracting localized spatial 
features, integrating sequential modeling (via LSTM) could capture deeper contextual patterns and enhance 
discriminative power especially in cases of visually similar or underrepresented lesion classes. The LSTM modules 
were applied to sequentially reshaped feature vectors extracted from the final convolutional layers, thereby modeling 
spatial transitions in a temporal sequence format.                

3. 2 InceptionV3: Multi-scale feature extraction 

 The InceptionV3 architecture, introduced by Szegedy et al. in the landmark paper "Going Deeper with 
Convolutions", represents a major advancement in efficient deep CNN design. Its core innovation lies in 
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the Inception module, which enables the model to simultaneously process multiple convolutional 
operations at different spatial scales: 
 This multi-branch strategy facilitates the extraction of both coarse and fine-grained image features, 
without necessitating prior knowledge about the optimal receptive field. The InceptionV3 version enhances 
the original architecture by including: 

 Factorized convolutions: breaking large filters (e.g., 5×5) into smaller convolutions (e.g., two 3×3 
layers). 

 Auxiliary classifiers: helping with gradient flow during training. 
 Label smoothing: mitigating overfitting on hard labels. 
These improvements not only deepen the network but also make it computationally viable. For skin 

lesion classification, this design is particularly effective at detecting complex patterns such as asymmetry, 
border irregularity, and variegated pigmentation—hallmarks of malignant lesions like melanoma. 

3. 3 MobileNetV2: Efficient on-device classification 

MobileNetV2, developed by Google, is specifically engineered for lightweight deep learning tasks in resource-
constrained environments such as mobile and embedded systems. This makes it an excellent candidate for real-time, 
on-device skin disease screening applications, such as teledermatology tools deployed via smartphones. 
The core innovation in MobileNetV2 is the use of depthwise separable convolutions, which reduce computation and 
model size by decomposing standard convolutions into two parts: 

a) Depth-wise convolution applies a single filter to each input channel, and which is given by (1). 

      𝑌,
(ௗ)

= ∑ ∑ 𝑊,
(ௗ)ିଵ

ୀ . 𝑋ା,ା
(ௗ)ିଵ

ୀ                  (1) 

b) Pointwise convolution (1X1 convolution), then combines the output channels, which is given by (2).  

𝑌,
()

=  ∑ 𝑊ଵ,ଵ,ௗ
()

ௗ . 𝑌,,ௗ
(ௗ)                   (2) 

In addition, MobileNetV2 introduces inverted residual blocks and linear bottlenecks, which maintain 
expressiveness while keeping memory usage low. The result is a drastic reduction in floating point operations 
(FLOPs)—by nearly 8–9× compared to standard CNNs—without substantial accuracy loss. 

Although MobileNetV2 may slightly underperform InceptionV3 in classification accuracy, its design excels in 
practical deployment scenarios, especially where computational efficiency, low latency, and energy constraints are 
prioritized. 

3. 4 LSTM Integration for spatial dependency modeling 

For both architectures, LSTM layers were added after the convolutional blocks to model the spatial dependencies 
embedded in the feature maps. This temporal modeling approach allowed the system to exploit spatial correlations 
within skin lesion regions, especially beneficial for distinguishing lesions with subtle boundary and texture 
variations. The variant of model and use case scenarios are given in Table 3. 

Table 3. Model variant and use case scenarios. 

Model Variant Strengths Use Case Scenario 
InceptionV3 High accuracy, deep multi-scale features Clinical-grade diagnostic systems 
MobileNetV2 Lightweight, low-FLOPs, efficient on-device inference Mobile apps, rural telemedicine 

InceptionV3 + LSTM Best accuracy, captures long-range spatial dependencies Research-grade dermatological 
pipelines 

MobileNetV2 + 
LSTM 

Good trade-off between performance and resource 
efficiency Real-time field-level applications 

4. RESULTS AND DISCUSSION 

  To evaluate the performance of the proposed architecture, we trained and tested four models on the HAM10000 
dataset: InceptionV3, InceptionV3 with LSTM, MobileNetV2, and MobileNetV2 with LSTM. Each model's 
performance was assessed using standard metrics: Accuracy, Precision, and Recall. The results are visualized in 
Figure 2. The bar chart clearly demonstrates that InceptionV3 with LSTM outperforms all other configurations, 
achieving the highest accuracy (72.01%) and recall (72.30%). The incorporation of LSTM layers improved the 
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contextual understanding of spatial features extracted by CNN backbones, thus leading to more robust classifications, 
especially for minority classes with subtle visual variations. While MobileNetV2 alone yielded slightly lower 
performance (accuracy: 69.30%), its LSTM-enhanced version significantly improved to 71.92%, indicating that even 
lightweight models can benefit from sequential spatial modeling. Given MobileNet’s low computational overhead, 
it remains a strong candidate for mobile or edge-based clinical deployments. The following three key points are 
worthy to note down. 

a) The marginal but consistent improvements with LSTM integration across both CNN architectures validate 
the hypothesis that temporal modeling of spatial features improves classification performance, particularly 
in class-imbalanced datasets like HAM10000. 

b) InceptionV3, due to its multi-scale convolutional layers, is more adept at capturing high-level lesion 
characteristics such as border irregularity, asymmetry, and variegated pigmentation, which are critical in 
distinguishing melanomas from benign nevi. 

c) On the other hand, MobileNetV2 trades a minor drop in classification performance for significant gains in 
computational efficiency, making it ideal for real-time applications such as smartphone-assisted 
dermatology. 

 
Figure 2. Accuracy, Precision, and Recall comparison of proposed study. 

  4. 2 Confusion Matrix and ROC curve analysis 

The confusion matrix, as shown in Figure 3 is for the InceptionV3 + LSTM model, reveals strong classification 
performance across all seven skin lesion categories, with the diagonal dominance indicating a high rate of correct 
predictions. Misclassifications are minimal and predominantly occur among visually similar classes such as 
Melanoma and Melanocytic Nevi, reflecting the inherent challenge in distinguishing borderline lesions. 

The ROC curves as shown in Figure 4, plotted using a one-vs-rest approach for each class, further validate the 
model’s discriminative capability. All classes demonstrate high true positive rates with Area Under the Curve (AUC) 
values exceeding 0.90 in most cases, indicating excellent separability. Notably, the model maintains a favorable 
balance between sensitivity and specificity even for underrepresented classes like Dermatofibroma (DF) and 
Vascular Lesions (VASC), highlighting the effectiveness of LSTM-enhanced feature modeling in handling class 
imbalance. 

4. 3 Accuracy 

The Model Accuracy Chart, shown in Figure 5 highlights that the InceptionV3 + LSTM configuration achieved 
the highest classification accuracy of 72.01%, marginally outperforming both its baseline (InceptionV3) and the 
MobileNetV2 variants. This indicates that incorporating LSTM into a deep CNN architecture effectively enhances 
spatial feature interpretation by modeling sequential dependencies across convolutional outputs. 

The Precision, Recall, and F1-Score (shown in Figure 6) Charts further reinforce this observation. InceptionV3 
+ LSTM consistently demonstrated superior performance across all three metrics, reflecting a balanced 
classification capability. Notably: 

 Precision improvements suggest fewer false positives in lesion prediction. 
 Recall enhancements indicate better identification of true positive cases, critical for detecting malignant 

conditions like melanoma. 
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 F1-Score, as the harmonic mean of precision and recall, confirms that the model achieves strong predictive 
power without sacrificing sensitivity or specificity. 

 

 
Figure 3. Confusion matrix for InceptionV3 + LSTM model. 

 
Figure 4. ROC curve.  

 

 

Figure 5. Model accuracy. 

The MobileNetV2 + LSTM, while slightly trailing in accuracy and F1-Score, still offers competitive performance 
with the added benefit of computational efficiency, making it suitable for mobile and edge-based diagnostic 
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applications. These results validate the effectiveness of combining CNNs with LSTMs for skin disease classification, 
especially in imbalanced medical imaging datasets like HAM10000. 

 

 
Figure 5. F1 Score.  

5. CONCLUSION 

This study presents a comprehensive evaluation of deep learning architectures for automated skin disease 
classification using the HAM10000 dermatoscopic image dataset. Two foundational CNN models, InceptionV3 and 
MobileNetV2Cwere examined, each in standalone form and in combination with LSTM layers. The integration of 
LSTM was intended to enhance the temporal modeling of spatial feature sequences derived from CNN feature maps, 
especially in addressing challenges posed by inter-class similarities and class imbalance. Experimental results 
demonstrated that the InceptionV3 + LSTM configuration achieved the highest classification accuracy (72.01%) and 
consistently outperformed other models across precision, recall, and F1-score metrics. The inclusion of LSTM 
improved the model's ability to capture complex spatial dependencies, leading to more accurate predictions, 
particularly for underrepresented lesion classes such as Dermatofibroma and Vascular Lesions. Conversely, 
MobileNetV2 + LSTM, while marginally lower in accuracy, exhibited strong potential for lightweight, resource-
efficient applications suitable for real-time mobile deployment. Confusion matrix analysis and ROC curve 
evaluations confirmed the models' robustness, with high true positive rates and area under the curve (AUC) scores 
across all diagnostic categories. The effectiveness of focal loss, class weighting, and augmentation strategies further 
contributed to performance improvements under data imbalance conditions. 

This research highlights the significant benefits of combining CNNs with LSTM for dermatological image 
analysis. InceptionV3 + LSTM is best suited for high-accuracy clinical decision support, while MobileNetV2 + 
LSTM is recommended for scalable teledermatology applications. Future work will explore transformer-based 
models, attention mechanisms, and domain adaptation techniques to further advance intelligent and explainable skin 
disease classification systems. 
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