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Carbon trading is a market-based technique to decrease greenhouse gas 
(GHG) emissions through the sale and purchase of carbon offsets. 
Incorporating artificial intelligence (AI) into carbon trading can alter the 
industry by improving information processing, statistical modeling, and trade 
automation. This paper presents an extensive structure for AI-driven carbon 
trading that considers critical aspects such as carbon trading volume and 
pricing to maximize productivity and sustainability. The study assesses 
numerous AI and machine learning (ML) theories, including their use in cost 
prediction, real-time market forecasting, and financial risk assessment. The 
main results show that AI integration increases market transparency, lowers 
fraud, and promotes informed decision-making, all of which helps to 
establish an environmentally friendly, effective, and adaptable carbon 
market. Furthermore, this work underscores the role of AI in advancing 
carbon-neutral economies by fostering innovation in emissions monitoring 
and reporting. These advancements highlight AI's critical contribution to 
achieving global climate objectives and addressing the urgent challenges 
posed by climate change. 
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1. INTRODUCTION 

The carbon trading sector has been significantly influenced by the incorporation of AI, which has brought forth 
innovative solutions to the pressing issues of climate change and the degradation of the environment. Trading carbon 
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creates lower emissions with a market-based strategy of greenhouse gases by buying and selling authorizations to 
produce carbon dioxide. AI technologies are crucial for making the process more cost-effective, accurate, and 
transparent [1]-[3]. An essential part of incorporating AI into carbon trading is predictive analytics that use 
ML techniques. Through the analysis of market patterns, historical information, and environmental variables, these 
algorithms can forecast future carbon prices. Market participants can use the predictive ability to limit risks, make 
educated choices, and strategically organize their carbon trading activity. To help governments and businesses set 
realistic and achievable carbon reduction goals, AI-driven analytics can also provide useful information on emission 
patterns [4]-[7]. AI has also significantly contributed to establishing a market for carbon trading. To reduce the 
likelihood of fraud and preserve the validity of environmental credits, AI collaborates to ensure safe and transparent 
operations. The verification and validation process can be automated and accelerated with the use of AI-powered 
smart contracts, which can increase the accessibility and efficiency of participants [8], [9]. 

The accuracy of carbon counting is enhanced when credits are distributed or withdrawn according to verified 
emissions data from this real-time monitoring. Algorithms powered by AI that can detect potential non-compliance 
may further bolster the legitimacy of carbon exchange. By integrating AI into carbon trading, new financial products 
can be easier to create. AI algorithms create new investment opportunities by assessing the financial risks associated 
with carbon expenditures. Carbon trading has attracted more investors, resulting in a lively and ever-changing market 
[10]-[14]. A new era of efficiency, transparency, and innovation could be dawning due to the adoption of AI, which 
is reshaping the carbon trading industry. As the world steps up its efforts to combat climate change, AI will keep 
playing a critical role in maximizing carbon markets, promoting moral behavior, and, in the long run, contributing 
to a future that is both resilient and ecologically benign [15]– [17]. Carbon and carbon emissions trading systems are 
the focus of this review study, which examines several models for AI integration with the goals of improving cost 
prediction and optimizing price. It explores the use of several ML and deep learning (DL) algorithms to predict the 
behavior of real-time carbon markets across different regions. 

AI and ML are significant in carbon trading and markets as they enhance data analysis, predict market patterns, 
and detect inefficiency. They can manage vast volumes of data from ecological indicators, economic trends, and 
legislative regulations, leading to more accurate carbon pricing and risk assessment. AI-powered systems also 
enhance precision and transparency, reducing fraud and boosting trust in carbon credit authentication. These 
developments can help close the research gap by improving decision-making, strengthening trading procedures, and 
encouraging the development of more ever-changing, effective, and scalable climate change markets. Figure 1 
illustrates the methodology employed in this study. The figure is divided into key stages that demonstrate the flow 
of processes and their interconnections. Initially, data acquisition is emphasized, where real-time and historical data 
on carbon emissions, trading volumes, and prices are collected from diverse sources, including IoT sensors, satellite 
imagery, and market databases. This data is then processed and fed into the AI-driven analytics stage, where machine 
learning models analyze trends, predict market behaviors, and optimize trading strategies. The framework also 
highlights a decision-making layer, where predictive insights from the analytics stage guide policymakers, traders, 
and other stakeholders in making informed decisions about pricing, risk assessment, and emissions reduction goals. 
Finally, the execution phase integrates these decisions into actionable steps, such as automated transactions, carbon 
credit allocation, and system monitoring for compliance and transparency. This comprehensive structure underscores 
how AI technologies streamline each stage, fostering efficiency, accuracy, and scalability in carbon trading systems. 

 

 

Figure 1. Strategy used in this work. 
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  2. CARBON TRADING 

Carbon trading, also known as emission trading, is a market-based strategy aimed at reducing greenhouse gas 
emissions. In this system, businesses are granted permits allowing them to emit a specific amount of CO₂. Companies 
that exceed their emissions quota must purchase additional credits from others with surplus allowances. This 
mechanism incentivizes emission reductions and promotes environmentally friendly practices [18]– [20]. 

Reference [89], which focuses on smart contracts, green energy operations, and carbon trading, explores 
blockchain-based solutions for carbon markets. It also discusses the relevance of game theory, artificial intelligence 
(AI), and cryptocurrencies in improving the transparency and efficiency of these systems. 

The expansion of carbon trading markets emphasizes support for companies and investors involved in carbon-
reduction technologies and green innovations such as renewable energy projects, energy-efficient infrastructures, 
and emission reduction initiatives. This growth opens new avenues for sustainable financial investments and 
technological advancement. 

 
Figure 2. Estimated market size for carbon credits (2023-2033). 

Figure 2 presents the projected growth of the carbon credit market between 2023 to 2033. Starting at USD 480.11 
billion in 2023, the market is expected to experience significant growth, reaching USD 13,322.68 billion by 2033. 
This rapid increase underscores the rising importance of carbon credits as a tool for mitigating climate change, driven 
by global efforts to reduce emissions and the growing adoption of carbon trading mechanisms [21]. To enhance the 
analysis presented in Figure 2, it is essential to include statistical significance metrics, such as confidence intervals 
or p-values, to validate the projected growth data for carbon credits from 2023 to 2033. It would add validity to the 
results while offering a better grasp of the trends presented.  

2. 1. Carbon trading market 

A climate change mitigation strategy and the carbon trading market facilitate the price of carbon emissions. It is 
also referred to as cap-and-trade emissions trading, or trading in emissions. In this system, which limits total 
emissions of GHG to a level set by a regulatory body, businesses are allotted a certain number of emissions credits 
or permits according to their permitted emissions. By reducing emissions below a certain level, a firm might provide 
more credits to customers who are consuming more than their allocated amount. Consequently, companies have an 
economic incentive to implement eco-friendly procedures and technology, which lowers emissions [22]–[25]. Two 
international agreements that significantly impacted the carbon trading market are the Kyoto Protocol and the Paris 
Agreement. By establishing a clean development mechanism (CDM) and mandating that developed nations cut their 
emissions, the Kyoto Protocol broke new ground and allowed developed nations to finance poor nations' carbon 
reduction programs. Carbon trading schemes were emphasized as crucial market-driven strategies in the battle 
against climate change in the Paris Agreement, which backs their continuance and expansion [26]-[30]. Carbon 
trading, a process involving the sale of carbon credits, is a strategy aimed at reducing GHG emissions through 
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programs such as energy efficiency, afforestation, and renewable energy installations. These credits can be traded on 
carbon markets or through bilateral agreements to create a flexible, affordable system that accelerates the transition 
to a low-carbon economy and promotes global economic equity [31]-[36]. The author of ref [95] investigated the 
impact of blockchain methods, such as smart contract technology, cryptocurrencies, and decentralized platforms, in 
improving carbon trading networks and accelerating the transition to low-carbon energy sources, as well as the 
incorporation of AI and game theory into energy exchanges. 

Table 1. Utilization of AI and ML in carbon trading markets. 

Ref Summary Main Findings 

[95] The paper suggests a new way to combine AI and 
blockchain to improve decentralized carbon markets 
and facilitate sustainable reduction of emissions. 

AI-driven pricing models greatly enhanced the precision 
of carbon credit pricing in comparison to conventional 
approaches. 

[96] The article suggests an online algorithm that uses 
carbon spot and future markets to enable carbon-
conscious ML task offloading for sustainable edge AI. 

The paper suggests a collaborative optimization task to 
reduce the loss of accuracy and remain within a limited 
budget for acquiring Carbon Emission Reduction (CERs) 
to accomplish environmentally friendly edge AI. 

[97] The article explores how Earth observation data and AI 
algorithms can be used to monitor, report, and verify 
carbon projects in voluntary carbon markets. 

The feasibility of utilizing Earth observation data and AI 
algorithms to oversee, document, and authenticate carbon 
projects in voluntary carbon markets is investigated. 

[98] The article talks about how AI and ML are used in the 
automotive sector to decrease carbon emissions, 
though it does not focus on carbon markets. 

AI and ML are instrumental in driving a shift towards 
sustainability and environmental awareness in the 
automotive sector. 

[99] ML algorithms play a significant role in carbon capture 
and storage by forecasting physical characteristics, 
assessing stability, and tracking CO2 movement and 
release. 

Various applications of carbon capture and storage 
extensively utilize ML algorithms such as ANN, CNN, 
SVM, as well as LSTM for tasks such as predicting 
physical properties, assessing mechanical stability, and 
monitoring CO2 migration and leakage. 

[100] This book utilizes AI and ML methods for predicting 
prices and trends in carbon markets. 

Utilizing data-based algorithms, it provides understanding 
of market dynamics, enabling accurate predictions of 
carbon credit prices, recognition of new trends, and 
evaluation of market instability. 

3. MODEL ANALYSIS 

Various investigations have presented certain theories, like [37] -[38], because legislation and regulations have 
had various impacts over the years. The framework of [37] considers pre- and post-treatment phases for an evolving 
evaluation of the treatment effect, which is important in carbon trading. Total resources, revenue development, 
revenue to overall assets ratio, payout policy indicator, long-term debt to total properties ratio, and cash reserves to 
the overall assets ratio are all combined to form the capital restriction indicator WW refers to in equation (1) [38]. 
The logarithm of total assets (SIZE, negative), the three-digit industry sales growth (ISG) industry sales growth of 
the firm (ISG, positive), the ratio of cash flow to total assets (CFA, negative), a dividend policy indicator (DIV, 
negative), the ratio of long-term debt to total assets (LD, positive), and the ratio of cash holdings to total assets (CH, 
negative) [37,38]. Initially, the SA index is provided [38] as a substitute assessment of the funding restrictions by 
equation (2). 

𝑊𝑊 =  − 0.044 ∗ 𝑆𝐼𝑍𝐸 +  0.102 ∗  𝐼𝑆𝐺 −  0.091 ∗ 𝐶𝐹𝐴 −  0.062 ∗  𝐷𝐼𝑉 +  0.021 ∗ 𝐿𝐷 −  0.035 ∗ 𝐶𝐻     (1) 

𝑆𝐴 =  −0.737 ∗  𝑆𝐼𝑍𝐸 +  0.043 ∗ 𝑆𝐼𝑍𝐸ଶ  −  0.040 ∗  𝐴𝐺𝐸         (2) 

When AGE is the natural log of the number of periods that a company has been publicly traded, and SIZE is the 
natural log of the company's overall assets, adjusted for inflation. In [39], Shen and his colleagues compared their 
model with their models in detail, so their model could complete previous models because it includes the 
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environmental consciousness of clients, reduction of emissions, and variable carbon prices. Thus, the framework is 
shown in Figure 3 and was modeled in [39]. 

 
Figure 3. Sustainable business flow. 

Figure 3 illustrates a supply chain model where carbon emissions from a manufacturer are influenced by other 
enterprises, with costs being exchanged between them. The manufacturer supplies products to an e-commerce 
platform at a price. 𝑝, which are then sold to customers at a price 𝑞, while the platform may receive a revenue share 
𝜌𝑃 From the manufacturer. The model captures the interactions between enterprises, manufacturers, e-commerce 
platforms, and customers, emphasizing the role of carbon emissions in the supply chain. The model heavily relies on 
the assumption of consumers' low-carbon preferences without accounting for potential variations across different 
demographics and regions. The findings may have limited generalizability, as consumer preferences can vary based 
on economic conditions, cultural factors, and market trends. AI can be used to develop predictive models that forecast 
carbon emissions based on production levels, supply chain activities, and market demand. Another research gap is 
the lack of integration of real, up-to-date carbon prices in the decision-making model. 
Ref [40] utilized a city-level dataset from 2001-2015 and a Difference-in-Differences (DID) assessment design to 
evaluate the impact of the NAAQMN program on local PM2.5 emissions in China. He and Song [41] utilized 
mathematical aspects in carbon trading and carbon emissions. Different models were presented in this work, such as 
DID and the Slack-Based Measure (SBM). The DID technique is used to assess how well the carbon trading program 
has performed in the test zones in terms of lowering carbon emissions and increasing the effectiveness of carbon 
emissions. The model includes two stages, which are indicated by equations (3) and (4): 

  In 𝐶𝑂2௧ = 𝛼 + 𝛼ଵ𝑝௧ + 𝛼ଶ𝑡𝑟𝑒𝑎𝑡 + 𝛼ଷ(𝑝௧ ∗ 𝑡𝑟𝑒𝑎𝑡) + ∑ 𝛼𝑋 + Ɛ௧

                                                    (3) 

𝛿௧
∗ = 𝛽 + 𝛽ଵ𝑝௧ + 𝛽ଶ𝑡𝑟𝑒𝑎𝑡 + 𝛽ଷ(𝑝௧ ∗ 𝑡𝑟𝑒𝑎𝑡) + ∑ 𝛽𝑋 + Ɛ௧


                                                                                 (4) 

In (3) and (4), 𝑖 stands for provinces, and 𝑡 Stands for years. In 𝐶𝑂2௧ Is the natural log of carbon dioxide emissions, 
and 𝛿௧

∗  It Is carbon emission efficiency. 𝑡𝑟𝑒𝑎𝑡  Is a dummy variable indicating whether a province is in the treatment 
group (1 for pilot areas, 0 for non-pilot areas). 𝑝௧𝐼𝑡 is a time variable (1 after 2013, 0 before). 𝑝௧ ∗ 𝑡𝑟𝑒𝑎𝑡 Is the 
interaction term, showing when the carbon trading policy was applied in a specific region. α3 and β3 represent the 
net effect of the carbon trading policy. Xi includes other control variables that might influence the results, andƐ௧ It 
is a random error term. 

The second model is used to minimize the efficiency of the score. 𝛿௧
∗ , which represents the carbon emission 

efficiency of a decision-making unit. Integrating ML models such as time-series forecasting or reinforcement 
learning can help in conducting dynamic efficiency analysis. This allows the model to account for changes over time 
and adapt to new data, improving the relevance and accuracy of efficiency scores. 
Another study explored a model in the Carbon Emissions Trading System (CETS) [42] on regional green technology 
innovation. The analysis was conducted using a DID approach. So, the basic model is presented by equation (5). 

      𝑖𝑛𝑣𝑒𝑛𝑡௧ = 𝛽 + 𝛽ଵ𝐷𝐼𝐷௧ + 𝛽ଶ𝑐𝑜𝑛𝑡𝑟𝑜𝑙௧ + Ὑ௧ + 𝜂௧ + Ɛ௧                                                                                       (5) 
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The reference mentioned that the model expands the emissions trading policy, which varies across different 
contexts and under different conditions. These extensions allow researchers to understand the nuanced effects of the 
policy, going beyond the average impact estimated in the basic model. Here’s why the model is extended by certain 
factors, such as Human Capital (HC), Intellectual Property Rights (IPR) protection, marketization, and spillover 
Effects. 

 

Figure 4. Application of frameworks, variables to reach carbon emission efficiency. 

Figure 4 illustrates the relationship between carbon trading policy and carbon emission efficiency, highlighting 
key factors and frameworks involved. Carbon trading policy influences both marketization and the development of 
techniques and structures, which are analyzed using frameworks like DID. The techniques and structures define 
variables such as carbon trading price and volume, which ultimately impact carbon emission efficiency. 

3. 1. Carbon trading volume 

The whole quantity of carbon credits or permits that are exchanged during a period is called the carbon trading 
volume. These amounts have been affected by changes in regulatory frameworks, market dynamics, and goals for 
reducing emissions [43],[44]. The market for the trading of carbon has expanded recently, mostly due to the adoption 
and spread of emissions trading schemes across different areas and a heightened emphasis on environmentally 
friendly practices. The commitment of nations and businesses to cut emissions and achieve their goals is another 
factor that determines the efficacy and success of carbon trading [44]-[49]. 

The carbon industry can suffer greatly from a resurgence of interest in the carbon market. The price of carbon 
has increased to a level that coal is being removed from the electrical system in favor of less polluting natural gas or 
carbon-free renewable energy sources, with a ton costing around €25. Traders believe that the price of carbon will 
increase to a point where other industries are compelled to invest in cleaner technologies and fuels. This will be 
beneficial for the environment but will also cause a significant shift in an industry that is yet unclear in its full effects. 
For financial institutions, increasing the amount of carbon trading makes sense since it can lower price shortages, 
mitigate the costs of low-carbon change, and provide a variety of monetary futures [50]. 

3.2. Carbon trading price 

Prices for carbon trading vary according to international climate targets, laws and regulations, and the dynamics 
of the market. Prices for carbon allowances are impacted by a variety of variables in established sectors, policy 
changes, and adjustments to emission reduction targets. Prices in the optional carbon markets, where companies and 
people voluntarily reduce their carbon footprint, are decided by the demand overall and the quality of the offset 
initiatives. Furthermore, many nations and areas have adopted their carbon pricing schemes, resulting in a variety of 
pricing arrangements worldwide. The general trend has been higher carbon prices as countries and organizations join 
forces to pursue more aggressive climate goals [51]- [55]. As the economy becomes more decarbonized, the demand 
for carbon credits will likely increase further. The yearly worldwide demand for carbon credits is expected to increase 
from 1.5 to 2.0 GtCO2e by 2030 to 7 to 13 GtCO2e by 2050. Governments will probably raise their efforts toward 
reaching net-zero timeframes, which would probably result in an even easier contraction of the credit supply. In 
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actuality, it actually was a 1.7% annual decrease in the quantity of European union (EU)permits granted between 
2013 and 2020. There is expected to be a 2.2% drop in certificates between the present and the year 2030.  In 2012, 
an excess of credit supply resulted in a decrease in prices. If the present trend continues, the cost of emissions per 
ton by 2024 might range from $50 to $80. The carbon price as updated by the EU's emission trading scheme for the 
years 2019 through 2024 is shown in Figure 5, this reference [56] can be used to update each framework. Figure 6 
shows carbon trading, where traditional resources produce emissions, can be used to purchase carbon offsets, 
resulting in a certificate of carbon neutrality, and businesses can invest in carbon-reducing projects by new 
technologies, and renewable energy systems (RESs) in industry. Table 2 presents outcomes, and summary of trending 
research. 

Table 2. Summary of AI-Carbon research. 

Ref Main findings Limitation 

[55] AI presents prospects for enhancing comprehension 
of global warming and efficiently tackling the climate 
emergency. 

One challenge in using AI to address global warming is 
ensuring the accuracy and reliability of climate models, 
which can be impacted by incomplete data and complex 
environmental interactions. 

[56] In order to improve decentralized carbon markets and 
accomplish sustainable emission reduction, the 
research suggests a novel fusion of blockchain 
technology with AI. 

Pay limited attention to particular characteristics of 
decentralized carbon markets, such as blockchain-based 
trade dynamics and AI-based price forecasting, while 
investigating a larger range of issues. 

[57] AI and blockchain technology can help in managing 
renewable energy sources and carbon trading. 

 

The high energy consumption of blockchain technology 
can work against the environmental aims of programs such 
as carbon trading and renewable energy management. This 
is a restriction of combining blockchain and AI in these 
areas. 

[58] Diversity advantages can be obtained from AI as a 
hedge against carbon costs; nevertheless, the 
relationship between AI and carbon prices is 
adversely affected by policy unpredictability and the 
COVID-19 pandemic. 

The volatility of carbon sectors, which is fueled by erratic 
policy shifts and outside shocks such as the COVID-19, 
presents a barrier to using AI as a hedge against carbon 
prices and can impede future investment and strategy. 

[59] In order to accomplish carbon-aware ML task off -
loading for green edge AI, the article suggests an 
online approach that takes use of carbon spots and 
potential markets. 

Determining the best course of action in real-time is 
difficult due to fluctuations in resource costs, CER 
purchasing prices, location-specific carbon intensity, and 
the emergence of Tasks 

[60] The study suggests using AI methods, such as a hybrid 
neuro-fuzzy controller, to predict carbon pricing and 
control related expenses. 

 

Due to the complexity of the models, there is a risk of 
overfitting when employing computational intelligence 
approaches, such as a hybrid neuro-fuzzy controller for 
carbon pricing prediction. This can decrease the models' 
usefulness in practical cases. 

[61] AI can help with the energy revolution and the 
lowering of carbon emissions, but the effect is 
dependent on how free commerce is. 

 

Diverse trade policies among nations pose an obstacle to 
the efficient implementation of AI for energy transition 
and carbon emission reduction. These policies can impede 
the exchange of technology, best practices, and data that 
are essential for effective collaboration and AI deployment 

The DID model assumes uniform treatment effects across provinces and relies on historical data, which may 
limit its adaptability to real-time changes in market dynamics or policy shifts. Similarly, the SBM framework 
provides efficiency scores but does not account for dynamic variables such as fluctuating carbon prices or external 
market shocks, which could impact its applicability. The DID model effectively quantifies the regional impact of 
carbon trading policies, offering a clear evaluation of treatment effects. However, it is limited by its static nature and 
reliance on pre-determined variables. In contrast, the SBM model’s ability to incorporate multiple inputs and outputs 
provides a more holistic view of carbon emission efficiency but may suffer from reduced accuracy when applied to 
regions with incomplete or inconsistent data [62]-[63]. To enhance these models, future research should focus on 
integrating real-time data streams and hybrid approaches. For instance, combining DID with machine learning 
techniques, such as time-series forecasting, could improve the model’s adaptability to evolving market conditions. 
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Additionally, expanding the scope of these models to consider external factors, such as global carbon pricing trends, 
geopolitical events, and technological advancements in carbon capture, could provide a more comprehensive and 
scalable framework. By addressing these limitations, the models can be refined to better align with the dynamic and 
interconnected nature of global carbon markets. 

 
Figure 5. EU Carbon Price Trends between 2019 and 2024. 

 
Figure 6. Carbon market dynamic. 

4. CONTENT ANALYSIS 

AI technologies play a crucial role in enhancing the precision and effectiveness of monitoring emissions and 
reporting within carbon trading systems. ML-driven automated systems can analyze large datasets to track emissions 
in real-time, guaranteeing accountability and transparency for involved parties [64]-[66]. AI-driven data analytics 
assist participants make wise decisions by offering insightful information about market patterns. 

Market participants can predict price variations, evaluate threats, and improve their carbon trading tactics for 
improved economic and ecological results by using forecasting models and historical data analysis [67]- [69]. It 
improves the accuracy and openness of carbon markets and is frequently combined with AI. It ensures the 
dependability of carbon credits and reduces the likelihood of fraud. By providing automatic trade execution when 
predefined conditions are satisfied, smart contracts streamline transactions and reduce administrative expenses. AI-
powered algorithms streamline trading processes, allowing for more efficient and rapid transaction execution. These 
algorithms optimize the purchase and sale of carbon credits by market participants in a way that complies with all 
applicable regulations by using AI to adapt to changing market circumstances [70]-[75]. AI is being used to assess 
the effectiveness of carbon offset programs by analyzing various datasets, evaluating environmentally impacting 
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enterprises, verifying emission reductions, and observing established protocols. AI-powered solutions make carbon 
credits more marketable and of higher quality. It also simplifies scenario simulation to evaluate potential policy 
changes on carbon markets, helping governments and organizations create effective climate policies [76]-[79]. Figure 
7 indicates ML and AI applications in carbon trading. 

 
Figure 7. Application of ML and AI in Carbon trading. 

The carbon trading sector is being radically transformed by ML, which is enhancing emission forecasts, 
predicting pricing trends, and automating trading operations. Machine learning algorithms improve real-time trading 
decisions by analyzing market trends and historical data to provide accurate emission projections. By responding to 
new information, automated systems keep operations running smoothly by regulations. In addition, ML aids in risk 
management by allowing traders to optimize carbon trading methods with knowledge by analyzing factors such as 
economic circumstances and regulatory changes. ML, SVM [80], random forest (RF) [81], and linear regression 
(LR) [82] can be employed for this purpose. One potential issue with AI- and ML-based automated trading systems 
is the difficulty in assessing the risk of a deal. The algorithms may fail if traditional risk management approaches are 
used, as they will override the algorithm's output. Before making a trade selection, an ML approach can evaluate 
hundreds of factors. The ML and DL methods are shown in Figure 8. ML revolutionizes carbon trading by enhancing 
emission forecasts and predicting pricing trends. Key factors that can be considered in this process include market 
trends, historical data, economic conditions, and regulatory changes, which help optimize trading strategies. 
Algorithms, such as SVM, RF, and LR, would analyze these variables to provide accurate insights. Additionally, 
ML can aid in real-time decision-making, allowing automated systems to adapt to new information and maintain 
compliance with regulations. However, assessing the risk of trade remains. 

Integrating AI and ML techniques into the framework depicted in Figure 9 can be applied in several areas to 
achieve specific goals related to carbon trading policy, marketization, techniques & structures, and carbon emission 
efficiency. Use ML models to predict the impact of various carbon trading policies on market behavior and carbon 
emission levels, trading prices to achieve the desired environmental outcomes while maintaining economic 
efficiency, facilitating the market's evolution towards efficient carbon trading. Figure 6 shows the ML, and the AI 
integrated with the framework is shown in Figure 9. 

SVMs are crucial in carbon trading for better risk management and forecasting. Market players can make better, 
more informed decisions with the help of SVM [80], which effectively predicts carbon credit values using historical 
data. Due to the algorithm's data classification capabilities, trend analysis is made less difficult, which in effect helps 
traders to identify patterns and anticipate changes in the market. Additional applications of SVM include evaluating 
potential outcomes of various scenarios, such as regulatory changes impacting the carbon credit market. Traders are 
provided with useful information to assist them in navigating the ever-changing carbon credit market, and the SVM-
driven application and risk management procedures are enhanced. Through the integration of past data, current 
trends, and risk evaluation, SVM helps in developing a more adaptable and robust approach within the intricate realm 
of carbon trading. For better risk management and carbon trading forecasts, SVM is an indispensable tool. With the 
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use of historical data, SVM can accurately forecast the prices of carbon credits in a carbon market context. Because 
of this, market participants can make better decisions by learning from the industry's historical trends. Due to the 
algorithm's data-categorization capabilities, trend analysis becomes less difficult, letting traders see patterns and 
anticipate market shifts. Changes in legislation impacting the carbon credit market are only one example of how 
SVM can be used to evaluate risks associated with various scenarios. 

 

 
Figure 8.  ML and DL methods. 

 
 

 
Figure 9. Application of ML, and AI into the framework. 
 

Traders get valuable insight into the complexities of the volatile carbon credit market when they use SVM-driven 
approaches to enhance risk management. Through the integration of historical research, trend detection, and risk 
assessment, SVM contributes to the development of a more versatile and long-lasting strategy within the intricate 

Goal: Enhance efficiency of 
carbon emissions reduction 

efforts. 

Goal:  Forecasting 
carbon trading prices 

and volumes. 
 

Goal: Optimize 
policy design and 
implementation. 
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domain of carbon trading. Carbon trading uses the RF method [81], a robust ML tool, for decision-making in complex 
datasets. It aids in cost estimations, market analysis, and strategy optimization. The RF algorithm's feature 
identification and prediction capabilities simplify risk assessment and optimize portfolios. LR models help carbon 
traders predict potential connections between factors affecting carbon credit costs. This improves forecasting 
accuracy and helps stakeholders respond to market challenges more effectively [82]. DL models analyze historical 
market data, emissions developments, and policy changes, identifying complex patterns and correlations. These 
models also enhance predictive analytics, leading to more accurate projections of carbon credit prices and market 
volatility. Moreover, DL can help with the optimization of portfolios by identifying the best trading approaches based 
on the analysis of complex data. The incorporation of DL models into carbon trading highlights the potential for 
enhanced processes for making decisions, more effective risk management, and innovation in environmentally 
friendly financial markets. Recurrent Neural Network (RNN) [83], ANN [84], Deep Neural Network (DNN) [85], 
and Traditional Decision Tree (TDT) [86] are different approaches that are reported in the literatures.  In the ever-
changing field of carbon trading, RNNs are quite helpful [83], particularly when it comes to examining temporal 
trends in time-series data. By utilizing knowledge from past data, their capacity to identify sequential relationships 
and patterns improves the forecasting of future emission levels and the cost of carbon credits. With the help of this 
tool, market players may more effectively forecast future prices, make well-informed judgments, and strengthen risk 
management plans. Due to their ability to identify complicated associations in historical data, RNNs help to provide 
a more thorough picture of the dynamic carbon trading landscape. This is because they provide stakeholders with a 
useful tool for navigating the complexity of the market and precisely and foreseeably optimizing trading strategies. 

The carbon trading industry is commencing to experience a rise in the use of ANNs. ANNs [84] are essential for 
predicting the cost of carbon credits because they are skilled at sifting through large datasets and identifying complex 
patterns. ANNs improve prediction accuracy by utilizing their ability to find non-linear correlations in past market 
data and emission patterns. With the use of this technology, market players may maximize their risk management 
tactics and make educated decisions in the ever-changing carbon trading market. Through the help of ANNs, 
participants may effectively handle uncertainties, improve trading strategies, and eventually increase the 
effectiveness and efficacy of ecologically friendly financial practices in the carbon trading space. ANNs offer an 
advanced tool for adjusting to the intricacies of the business. 

DNNs are becoming more and more used in carbon trading because of their amazing ability to evaluate large 
and complex datasets. DNNs [85] are extremely useful in this situation because they can quickly and accurately spot 
intricate patterns in past market data, emission trends, and regulatory changes. Their capacity to identify irregular 
patterns in data is very useful, leading to more precise forecasts and insights. This quality is essential for effectively 
handling risks, fine-tuning trading tactics, and negotiating the complex and ever-changing carbon trading market. 
The adaptability and learning capacities of DNNs place them as valuable assets in the pursuit of sustainability and 
profitability in carbon trading, as stakeholders look for trustworthy instruments to make informed decisions and 
maintain their competitiveness in the market. 

 
Figure 10. Structure layout of TDT. 
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In the carbon trading industry, traditional decision trees [86] are useful instruments for making strategic choices 
based on past performance and other influencing factors. In this situation, decision tree models are used to forecast 
outcomes like pricing for carbon credits or emission levels by analyzing input variables, including economic 
indicators, modifications to regulations, and data related to the project. Decision points and possible results are 
marked by the tree structure, which makes the decision-making process easier to see and understand. Decision trees 
can help comprehend market dynamics by recursively splitting data based on pertinent features and identifying 
patterns and connections [87]-[89].  Figure 10 depicts a TDT's structural layout. Three different types of nodes 
structure a TDT, subtrees, leaves and root nodes. While a leaf node presents a category target label and represents a 
classification or forecast outcome, root and sub-tree nodes indicate a binary split test on an attribute. The two 
fundamental phases of the TDT technique are classification and learning. Data is collected throughout the learning 
process and divided into testing and training sets. The development of testing and training sets is a crucial component 
in the assessment of big data models, which is accomplished by randomly selecting a sizable portion of the database's 
data to be utilized as the remaining information as test data and the training data. The incorporation of AI and ML is 
indicated in Figure 11. 

 

 Figure 11. ML and AI techniques for different goals. 

5. PROSPECTIVE DIRECTION 

The future scope of ML and AI in carbon trading lies in transforming it into a more intelligent, efficient, and 
transparent system, thus enabling smart trading. By leveraging large datasets, ML techniques such as SVM, RF, and 
deep learning models can anticipate trends, analyze risks, and optimize trading strategies. For instance, SVM and RF 
models can be employed to predict market fluctuations based on various environmental and economic indicators, 
while deep learning can be used to model complex, non-linear relationships within the data [90]-[92]. 

AI can significantly improve decision-making by analyzing market trends, ensuring legal compliance, and 
applying advanced statistical analysis to forecast market behavior. For real-world applications, AI could also be used 
to automate the optimization of trading portfolios, adjust strategies dynamically to external factors such as policy 
changes or market disruptions, and enhance the effectiveness of carbon market instruments. 

Blockchain innovation, along with AI, improves the effectiveness and privacy of emissions trading. Blockchain 
enables decentralized verification, which increases transparency and reduces the likelihood of fraud. AI models can 
also simulate probable market reactions to modifications to policies, giving stakeholders data-driven insights to help 
them make informed tactical decisions. AI can be used to optimize carbon credit price models by taking into 
consideration factors such as lowering emissions, future potential price volatility and policy impacts. Future research 
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could focus on developing AI models capable of integrating with blockchain platforms to fully automate carbon 
credit transactions. A critical area for future investigation is the integration of IoT with carbon trading systems. IoT 
may facilitate the immediate gathering of data and ongoing monitoring of emissions in a variety of sectors, including 
industry, transportation, and power plants. IoT devices can collect exact, real-time emissions of carbon data and 
promptly transmit it to decentralized systems, assuring data reliability and openness in carbon markets. This 
integration offers significant opportunities for reducing transaction costs and increasing market efficiency. 
In the real world, merging IoT with blockchain-based technology enables automatic verification of carbon credit 
transactions after emission data is authenticated, which speeds up the trading process. AI and ML models can 
evaluate real-time data to forecast market moves, allowing traders to make selections based on current data rather 
than trends from the past. Additional studies should focus on developing computations incapable of making real-
time forecasts in turbulent markets and examining the financial feasibility of such technology under various market 
circumstances. Furthermore, automated IoT systems can assist organizations in optimizing their carbon footprints, 
enabling smarter compliance with carbon trading regulations. This can also lead to more dynamic participation in 
carbon markets, as companies gain insights into their emissions profiles and adjust strategies accordingly. By 
enhancing the tracking of renewable energy usage, IoT could allow companies to optimize their energy consumption 
and emissions reductions, thereby improving their position in the carbon market. 
Despite the tremendous potential, there are several challenges to be addressed. Implementing AI, ML, and IoT in 
carbon trading requires overcoming technical barriers related to data standardization, integration, and privacy 
concerns. Moreover, there is a need for international collaboration to establish regulations and standards for AI-based 
carbon trading solutions. The complicated nature of policy frameworks, as well as the varying pace of regulation 
acceptance between regions, may hinder general implementation.  On the other side, the integration of these 
innovations creates enormous opportunities, such as increased market availability, shorter settlement times, greater 
transparency, and a lower chance of fraud. There is also a need for further field tests and pilot programs to show that 
these technologies have practical advantages and can scale. 

In conclusion, combining AI, ML, IoT, and decentralized platforms could lead to a smarter, more resilient carbon 
trading market that accelerates the global transition to low-carbon energy. This collaboration can not only improve 
market efficiency but also enhance ecological responsibility and boost economic productivity in carbon markets. 
Future research should continue to explore the interoperability of these technologies, the development of predictive 
models that integrate real-time data, and the establishment of standards for ensuring the security and scalability of 
these solutions. This integration would result in an end-to-end smart trading ecosystem, combining real-time IoT 
insights, AI-powered analytics, and secure blockchain transactions [95], [100]. Furthermore, IoT can improve the 
tracking of renewable energy usage, enabling companies to trade more efficiently by linking emissions data directly 
with energy consumption [96],[101]-[102]. 

6. DISCUSSION  

Carbon trading encourages companies to reduce emissions by offering financial incentives for carbon credits. 
The integration of ML and AI improves emissions tracking accuracy, trading strategies, and market trends, enhancing 
carbon management efficiency and regulatory compliance. In this paper, the authors provide a framework including 
the DID model, carbon trading policy, carbon emission efficiency, and market variables such as carbon trading 
volume and carbon trading price, which are presented in Figure 4. Figure 5 shows the price of carbon as updated by 
the EU's emission trading scheme between 2019 and 2024. Moreover, Figure 6 displays carbon trading, while the 
traditional resources are producing emissions, which are represented. This money can be used to purchase carbon 
offsets, such as RESs, such as wind turbines (WTs), and photovoltaics (PVs) [103]. In return for their investment in 
these offsets, the factory receives a certificate that verifies their carbon neutrality. Corporations can offset their 
emission levels by investing in carbon-reducing projects. This can contribute to meeting the goal of lowering carbon 
dioxide emissions and minimizing climate change. The remainder of this study focuses on the incorporation of AI 
and ML into carbon trading. 
  So, Figure 7 to Figure 9 describe the application of these techniques, the structure of AI and ML techniques, and 
the application of ML, and AI in the framework. Table 3 illustrates the application of ML and DL in carbon trading. 
Table 3 highlights the application of various ML and DL algorithms in carbon trading and related environmental 
tasks. It showcases their predictive capabilities in areas like carbon disclosure trends, atmospheric CO2 limits, 
biomass estimation, carbon cost forecasting, and emissions system predictions. The results emphasize the accuracy 
and efficiency of models such as RF, SVM, and DNN, underscoring their potential to enhance decision-making and 
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sustainability efforts in carbon trading. Table 4 represents the comparison with previous work.  For future research, 
researchers can bridge some research gaps in this work: 

1. Consider other environmental metrics for future work. 
2. Apply and simulate ML techniques to the framework presented in Figure 2. 
3. Investigate emerging technologies, such as carbon capture. 

Table 3. ML and DL algorithms and results in carbon trading. 
Ref Description Algorithm Findings 
[79]  To employ ML algorithms to investigate the 

trend of optional disclosure of carbon in the 
Korean financial sector. 

Logistic, RF, and GBDT Logistics have 89%, RF has 94% 
and GBDT has 92% accuracy. 

[80] An estimate of when the world would reach a 
particular upper limit of atmospheric carbon 
dioxide concentration was made using 
historical data. 

SVM and Linear regression SVM (Root Mean Square Error 
(RMSE)= 0.255) and (RMSE= 
0.405)  

[78] Recent developments in data science and GIS 
technologies have made it possible to 
anticipate aboveground biomass (AGB) and 
evaluate ecosystem services in agroforestry, 
and this capacity is growing quickly. 

SVM, RF and ANN SVM (RMSE = 21.97, R2 = 0.54), 
RF(R2 = 0.69 and RMSE = 17.07) 
and ANN (R2 = 0.63 and RMSE = 
19.35) 

[84] To construct a prediction model that ascertains 
future carbon costs given a collection of real-
world facts. To develop a model for forecasting 
future carbon pricing. 

Conditional Decision Tree 
(CDT), Traditional Random 
Forest (TRF), Conditional 
Random Forest (CRF), and 
TDT 

CDT (Mean Absolute Error 
(MAE)= 0.6608, MSE= 1.3007), 
TRF (MAE= 0.2500, Mean Square 
Error (MSE)= 0.1413), CRF 
(MAE= 0.5258, MSE= 0.5444) and 
TDT (MAE= 0.8398, MSE= 
1.3991) 

[83] A new and effective forecasting technique 
helps to properly anticipate the carbon 
emissions of the electricity system. 

Particle Swarm 
Optimization (PSO)-DNN, 
Improved Particle Swarm 
Optimization (IPSO)-DNN, 
and Spearman Correlation 
Analysis (SCA)-IPSO- 
DNN. 

PSO DNN (MAE= 0.2016, MSE= 
22.6872), IPSO DNN (MAE= 
0.1578, MSE= 21.7883) and SCA 
IPSO DNN (MAE= 0.0867, MSE= 
3.7572) 

Table 4. Comparison with previous. 

Ref Objective of the study Algorithm Findings 

[85] To forecast the solubility of CO2 in ionic 
liquids. 
Evaluating diverse ionic liquid kinds under 
varied pressure and temperature ranges. 

ANN and SVM The CO2 solubilities were well-
fitting and forecast by both models. 
But the ANN model managed to 
identify better results. 

[86] To determine how surface functionalization 
affects graphene oxide-amine nanofluid CO2 
performance. 

 MLPNN, Adaptive Neuro-
fuzzy Inference Systems 
(ANFIS), LSSVM, RBF, 
Gradient Reinforcement) 
(GR), and Cascade 
Feedforward (CFF). 

The CFF neural network produces 
accurate predictions because of its 
minimal root mean square and mean 
square mistakes. 

[87] To use a genetic algorithm in ML to forecast 
Metal–organic Frameworks (MOF) efficiency 
in swing adsorption in vacuum. 

Genetic algorithm (GA) 
method 

Establishing greater CO2 recovery 
(90%) and purity (95%) is only 
possible with 482 MOFs materials. 
Up to 91% of predictions made by 
the ML model are accurate. 

[88] In the Permian Basin, using ANN to anticipate 
CO2 storage and oil recovery. 

ANN strategy The findings show that the ANN 
technique can accurately forecast 
CO2 storage and oil recovery in real-
world scenarios. 

[89] To identify irregularities in the monitoring well 
pressure data sources for the purpose of storing 
and collecting carbon. 

 LSTM, CNN, and Conv -
LSTM 

The Conv-LSTM outperforms other 
models in terms of accuracy, 
according to the data. 
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[90] By creating standardized CO2 adsorption 
models on Porous Carbon Materials (PCMs) 
and performing a comprehensive examination 
into the effects of different parameters on CO2 

capture capability within the same framework, 
this study filled in gaps in knowledge. 

RF technique The findings show that the RF 
technique has a greater accuracy in 
predicting the chemical and physical 
characteristics of materials made of 
carbon with pores (useful 
prediction: 𝑅2 >  0.9). 

[91] Six distinct AI techniques are used to 
estimate the solubility of CO2 in 1-n-butyl-3-
methylimidazolium tetrafluoroborate 
([Bmim][BF4]). These techniques include four 
ANN, LS-SVM, and ANFIS. The optimal 
model for the examined issue has been 
determined to be the feed-forward neural 
network in cascade. 

AI methods, such as ANFIS, 
SVM, cascade feed-forward 
neural NN, and ANN. 

The findings show that the feed-
forward neural network in cascade 
was very effective in predicting the 
absorption of CO2 in liquids with 
ions. 

[92] It emphasized different strategies that combine 
using molecular simulations and 
ML approaches to accurately evaluate the 
capabilities and characteristics of MOFs for 
several applications, such as gas storage, 
segregation, and catalysis, and to forecast the 
reliability, guest accessibility, and 
synthesizability of MOFs. The enormous 
potential of integrating ML strategies into 
mathematical modeling of MOFs. 

ANN and the decision tree 
model with GB. 

Using complete process simulation, 
ML models were used to forecast the 
performance of Vacuum-swing 
Adsorption (VSA) technique uses 
thirty materials. 91% of the 
predictions were made with total 
accuracy. 

 
While it would be true that AI systems require significant energy resources, recent advancements in energy-

efficient AI algorithms and hardware offer promising solutions to mitigate these concerns. For instance, edge 
computing and green AI models have been developed to optimize resource usage, significantly reducing the carbon 
footprint of AI operations [93]-[96]. Furthermore, in the context of carbon trading, the potential environmental 
benefits of AI can outweigh its energy demands. AI-driven systems enhance the accuracy of emissions monitoring, 
automate fraud detection, and enable predictive analytics for market behaviors, which collectively contribute to 
substantial reductions in GHG. These capabilities create a net-positive impact by promoting efficient trading systems 
that directly support carbon neutrality goals. 

To address the concern more holistically, AI applications in carbon trading can be coupled with renewable energy 
sources and carbon-offset mechanisms to neutralize their operational emissions. For example, leveraging 
decentralized platforms powered by blockchain can improve transparency, while using renewable-powered data 
centers ensures alignment with sustainability objectives. By integrating such approaches, AI-driven carbon trading 
not only remains a viable tool but also becomes a critical enabler in achieving a balanced and sustainable pathway 
toward global carbon reduction goals. 

This study highlights the transformative role of AI in enhancing efficiency, transparency, and scalability in 
carbon trading systems. However, the study is limited by the absence of practical implementation data and the 
reliance on simulated environments for validating AI models. These limitations underscore the need for future 
research to incorporate real-world datasets and explore region-specific dynamics to ensure the robustness and 
adaptability of proposed AI frameworks. Addressing these gaps could significantly enhance the reliability of AI 
applications in achieving global climate objectives. 

7. CONCLUSION 

The study explores the use of AI in carbon trading to reduce greenhouse gas emissions. It reveals that AI can 
improve the precision and efficacy of carbon trading systems by analyzing datasets, automating transactions, and 
forecasting market trends. The study also investigates how artificial intelligence might help reduce carbon emissions 
in industrial and sustainable systems. However, it emphasizes possible downsides, such as biased algorithms, 
interpretability concerns, and the necessity for data of superior quality. This study’s strategy is presented in Figure 
1. Moreover, this study provides a comparison in previous research including details, limitations, and model analysis 
as shown in Tables 2 to 4, and ML/AI integration in different goals in carbon trading which is indicated in Figure 
11. The findings reveal that AI enhances the precision and efficiency of carbon trading systems by enabling real-
time emissions tracking, automating transactions, and providing robust market trend forecasts. This work provides a 
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comprehensive framework that builds on prior research, offering new perspectives on the role of AI in driving global 
climate objectives. While the study highlights the potential of AI, it also acknowledges limitations, including the 
need for real-world application and validation of the proposed models. Addressing these limitations in future research 
could further solidify AI’s transformative impact, making carbon markets more effective in combating climate 
change. This contribution is vital for policymakers, businesses, and researchers aiming to achieve a carbon-neutral 
economy. 
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